Каково строение структурных генов эукариот. Строение генов про- и эукариот. Принципы и этапы репликации ДНК

Вся последовательность нуклеотидов гена принимает участие в кодировании последовательности иРНК, однако часть участков иРНК в процессе ее так называемого созревания вырезают специальные ферменты, а те, что остались, образуют вторичную иРНК, из матрицы которой, собственно, и происходит синтез белков.

Участки ДНК, которые в процессе созревания иРНК вырезаются, получили название интронов , а те, что потом сшиваются и служат матрицей для трансляции, - экзонов . Как правило один ген содержит от трех до пяти интронов. Однако следует отметить, что в генах прокариот интронов и экзонов нет.

Наукой пока не известна причина сложного строения генов прокариот. Однако есть несколько факторов объясняющих это. Поскольку интронная - экзонных организация является свойством генов только эукариот, вполне обоснованное предположение: такая сложная структура генов - прогрессивное эволюционное приспособление эукариотических организмов. Считают, что, прежде всего, это может быть механизмом, который ограничивает мутационный процесс. При этом интроны выполняют функцию «ловушек» мутаций. Ведь изменение нуклеотидных последовательностей в частях структурного гена, не кодируется, не приведет к мутациям и появлению аминокислотных замен. Кроме того, если в одном из экзонов и произойдет вставка или выпадение нуклеотида, то это повлечет смещение рамки синтеза не всей иРНК, а только какой-то ее части, то есть эффект будет не таким уж и губительным. Очевидно, сложная структура гена обеспечивает его более высокую стабильность и надежность функционирования.

Кроме структурных генов, кодирующих ту или иную форму РНК, в геноме всех организмов есть еще и регуляторные гены, которые определяют начало, скорость и последовательность процессов синтеза РНК на матрице ДНК. Они являются местом прикрепления ферментов и других белков, участвующих в репликации и транскрипции, регулируют активность генов. Регуляторные гены небольшие, включают только 20-80 пар нуклеотидов каждый, а поэтому сравнительно со структурными генами занимают гораздо меньше места в геноме. Однако без этих генов, которые не кодируют специфические белки, а только регулируют процессы репликации ДНК, взаимодействие ДНК с определенными белками и ферментами, прохождения конъюгации хромосом, так же невозможно функционирование генетического аппарата, как без гормонов (веществ, синтезированных организмом в минимальных количествах) - жизнедеятельность человеческого организма.

  • Промотор - регуляторная последовательность ДНК (не транскрибируется), расположенная слева от точки начала транскрипции.
  • 5’ – нетранслируемая область (лидер) – начинается от точки начала транскрипции до старт-кодона (транскрибируется, но не транслируется, входит в состав зрелой мРНК)
  • Кодирующая область - экзоны и интроны (транскрибируется, но интроны вырезаются из пре-мРНК, в зрелой РНК остаются только экзоны)
  • 3’ – нетранслируемая область (трейлер) – начинается от стоп кодона до последовательности АААУАА (участок полиаденилирования).

Экзоны и интроны . Большинство генов эукариот имеет прерывистое строение, они содержат кодирующие последовательности – экзоны, и некодирующие последовательности - интроны.

Гены начинаются и заканчиваются экзонами, набор интронов может быть любой. Например, глобиновые гены, имеют 3 экзона и 2 интрона. Другие гены могут иметь большое количество интронов (20 и более). Например, ген, кодирующий синтез белка-рецептора для липопротеинов низкой плотности (LDL), имеет 40 интронов, а ген белка дистрофина – 79 интронов. Размеры интронов больше, чем размеры экзонов, поэтому экзоны составляют очень небольшую часть.

В зрелой молекуле мРНК присутствуют только экзоны, а интроны вырезаются из первичного транскрипта (пре-РНК) в процессе сплайсинга . Поэтому размеры зрелых мРНК эукариот всегда меньше размеров самого гена и пре- РНК.

Не все гены эукариот содержат интроны . Не содержат интронов гены гистоновых белков, гены интерферонов, гены митохондрий млекопитающих и человека.

Экзоны – это кодирующие последовательности ДНК генов эукариот, представленные в зрелой молекуле РНК.

Интроны – это некодирующие участки генов эукариот, которые транскрибируются, но затем вырезаются из первичного транскрипта во время сплайсинга и не входят в состав зрелых РНК, т.е. не транслируются.

Новая концепция гена . Благодаря альтернативному сплайсингу из одной молекулы первичного транскрипта (пре-мРНК) можно получить несколько различных вариантов молекул зрелых мРНК с разным набором экзонов. В связи с этим можно говорить о новой концепции гена: один ген – много РНК – много полипептидов и сформулировать новое определение гена. Ген - это участок молекулы ДНК, кодирующий синтез одной или нескольких функциональных молекул РНК.

Гены прокариот состоят из двух основных элементов: регуляторной части и собственно кодирующей части(рис. 27). Регуляторная часть обеспечивает первые этапы реализации генетической информации, а кодирующая часть содержит информацию о структуре полипептида, тРНК, рРНК. У прокариот структурные гены, кодирующие белки одноо метаболического пути, часто бывают объединены и называются опероном . Так, например, в лактозном опероне E. coli содержится 3 структурных гена. Для биосинтеза аминокислоты гистидин требуется 9 ферментов и ее оперон содержит 9 структурных генов.

Гены, кодирующие белки, обычно содержат на 5"- и 3"- концах гена или оперона нетранслируемые последовательности (5" – НТП и 3" – НТП ), которые играют важную роль в стабилизации иРНК. Гены тРНК и рРНК отделены друг от друга спейсерами (от англ. – spacer – распорка), т.е. последовательностями, которые вырезаются в ходе их созревания (процессинга)(рис. 27).

(А. С. Коничев, Г. А. Севастьянова, 2005, с. 157)

Гены эукариот имеют более сложное строение. В 1978г. У. Гильберт предположил: эукариотический геном состоит из модульных единиц, что позволяет «смешивать» и «сочетать» части. Онна основании анализа многих работ предложил модель мозаичного (интронно-экзонного) строения гена эукариот (28).Интроны – это некодирующие последовательности, они не входят в состав зрелых РНК.

Экзоны – это последовательности участвующие в образовании зрелых РНК. Они могут быть как кодирующие так и некодирующие. Наследственная информация экзонов реализуется в синтезе определенных белков, а роль интронов до конца еще не выяснена.

Возможное значение интронов:

1. Интроны снижают частоту мутаций, соотношение интронов и экзонов у человека 3:2.

2. Интроны поддерживают структуру ДНК, т.е. играют конститутивную роль.

3. Интроны необходимы для процесса созревания иРНК. Без интронов нарушен выход иРНК в цитоплазму. При введение в ядро искусственной иРНК без интронов, она остается в ядре и в цитоплазму не выходит.

4. В последние годы четко установлено, что некоторые интроны кодируют белки – ферменты, которые их вырезают.

5. Превращаются в малые ядерные РНК (мяРНК).

(А. С. Коничев, Г. А. Севастьянова, 2005 г., с. 157)

Гены высших организмов чаще оказываются прерывистыми, но есть и непрерывистые, например, гены интерферонов, гены гистонов. Степень прерывистости может быть различной – от одного интрона как у гена актина до нескольких десятков, как у гена коллагена(рис.29).

Рис. 29. Карты некоторых прерывистых генов. Жирные линии – экзоны, тонкие - интроны (А. С. Коничев, Г. А. Севастьянова, 2005 г., с. 158)

Длина интронов часто оказывается длинней экзонов: 5 – 20 тыс. и 1 тыс. соответственно. Прерывистость гена считалось достоянием эукариот. Но в 1983г. группа ВЕЗЕ (США) обнаружила их у некоторых археобактерий. Интроны содержаться во всех типах РНК, Интроны в составе иРНК вырезаются при участии мяРНП, которые образуют с интроном сплайсосому. При помощи сплайсосом, узнается начало и конец интрона, их концы соединяются в цепи РНК и интрон вырезается (рис.32).

Эволюционное возникновение мозаичной (итрон – экзонной) структуры генов эукариот в настоящее время не находит объяснения. С точки зрения У. Гильберта появление интронов обеспечило возможность обмена экзонами между неродственными генами. В результате это привело к появлению белков с новыми функциями (гипотеза позднего возникновения интронов). По другой гипотезе интроны это эволюционные реликты, они были частью гигантских генов. Прокариоты являются эволюционным тупиком т.к. не содержат интронов.

Регуляция работы гена

Гены функционируют в клетке не сами по себе, а входят в состав более сложной генной регуляторной системы. Количество структурных генов в разных оперонах различно. Участок ДНК, на на котором проходит считывание информации, называется единицей транскрипции (Рис. 27, 28). Он ограничен промотором (зона начала транскрипции) и терминатором (зона остановки транскрипции).

1. Промотор – это строго определенная нуклеотидная последовательность, которая узнается ферментом транскрипции – РНК – полимеразой.

У E. coli промотор – это пара нуклеотидных последовательностей из 6-7 и 9 нуклеотидов каждая, отдельных друг от друга 25 нуклеотидами.

Промотор выполняет следующие функции:

а) это место присоединения РНК – полимеразы к молекуле ДНК

б) последовательность оснований в промоторе определяет какая из цепей ДНК будет «смысловой», т.е. с какой цепи ДНК будет идти считывание информации (РНК – полимераза всегда двигается по цепи ДНК от 3" к 5" концу ).

У про- и эукариот последовательности промоторов разные. Это учитывается в генной инженерии, в случае встраивания в геном бактерии генов человека.

Промоторы эукариот разнообразны по числу и строению элементов. Промотор эукариотического гена – это участок ДНК, на котором собираются белки транскрипции, узнающие свои сайты связывания и взаимодействующие друг с другом и с иРНК – полимеразой. В составе эукариотического гена имеются особые цис-действующие элементы регуляции - усилители или активаторы, глушители или угнетатели транскрипции. Они разнообразны по строению, положению и функциям. Они могут располагаться как на 5" - так и на3 "- конце фрагмента ДНК, включающего ген, так и в составе интронов.

2. Оператор – это нетранскрибирумая последовательность нуклеотидов, участок связывания белка - репрессора. Он располагается в непосредственной близости к промотору или перекрывается с ним. У многих оперонов имеется не один, а несколько сайтов связывания с регуляторными белками, которые не обязательно располагаются рядом, а могут находиться по разные стороны от промотора. Поэтому сейчас принято говорить о сайтах связывания регуляторов. Связывание белка – репрессора с оператором либо создает стерические (пространственные) затруднения для связывания РНК-полимеразы с промотором, либо препятствует продвижению ее по смысловой цепи ДНК, и определяет точку начала транскрипции. Следует отметить, что ни промотор , ни оператор в РНК не транскрибируются и зоны промотора и оператора могут перекрываться.

3. Терминатор – участок молекулы ДНК, где заканчивается процесс транскрипции.

Оператор и структурные гены образуют оперон. Именно так назвали эту структуру французские ученые Франсуа Жакоб и Жак Моно , которые первыми в 1959 -1961г. работая с бактериальными клетками предложили механизм регуляции работы гена или генной экспрессии . За эту работу в 1965г. они получили Нобелевскую премию. Как выяснили Жакоб и Моно работой оперона управляют гены – регуляторы . Они не входят в состав оперона, но являются необходимой частью регуляторной системы. Гены – регуляторы у прокариот находятся на той же хромосоме, что и оперон. У эукариот они могут располагаться далеко от промотора эукариотического гена и оказывать дистанционное влияние на его транскрипцию. Гены - регуляторы контролируют синтез белка – репрессора связывающегося с оператором. Синтез белков – репрессоров, как и всех белков, идет на рибосомах в цитоплазме. Транскрипция определяется белком-репрессором, который может закрывать оператор (репрессор акти­вен ) или открывать его (репрессор неактивен ), т.е. возможны два варианта регуляции активности генов.

I. Ген – регулятор отвечает за синтез активного белка – репрессора . Белок – репрессор имеет два активных центра:

1. центр связывания с оператором

2. центр связывания с субстратом. Под субстратом (индуктором) понимают любое вещество, информация о синтезе или распаде которого закодирована в данном опероне или гене. Это могут быть гормоны, аминокислоты, углеводы, питательные вещества, яды и т.д.

Субстрата в клетке нет, поэтому активная форма белка – репрессора соединяется с оператором, т.е. оператор закрыт и через него не может пройти фермент РНК – полимераза, транскрипция не идет (рис.30). Открытие оператора идет с помощью субстрата (индуктора), поступаю­щего в клетку. Индуктор взаимодействует с белком – репрессором, что приводит к изменению его конформации (пространственной структуры). У инактивированного белка репрессора резко снижается родство к зоне оператора и он отсоединяется от него. Оператор свободен и это позволяет РНК-полимеразе начать транскрипцию. Она продолжается до тех пор, пока в клетке есть субстрат, т.е. пока есть необходимость в продуктах данного оперона или гена (рис.31).

При сокращении количества субстрата его уже не хватает на молекулы белка – репрессора и активный белок – репрессор присоединяется к оператору. Транскрипция прекращается. Следует отметить, что в клетке белок реперссор синтезируется постоянно и его количество строго определенное. Например, в клетке E. сoli находится около 10 молекул белка-репрессора, который регулирует работу лактозного оперона.

II. Ген – регулятор отвечает за синтез неактивной формы белка – репрессора, т.е. он не может присоединится к оператору. Оператор свободен иРНК – полимераза свободно проходит к структурным генам. Оперон будет работать до тех пор, пока есть необходимость в продуктах данного оперона.

Когда данный продукт клетке уже не нужен (он не расходуется в биохимических процессах и накапливается в клетке), субстрат взаимодействует с неактивным белком – репрессором, активирует его. Белок-репрессор закрывает оператор и выключает транскрипцию.

Такой способ регуляции метаболизма в клетке чрезвычайно экономичен, т.к. клетка синтезирует продукт в таком количестве, которое необходимо для поддержания определенного уровня обменных процессов. При избытке конечного продукта данный метаболический путь выключается. То есть, мы видим взаимодействие между внутриклеточной средой и генетическим аппаратом для обеспечения тонкой регуляции клеточного метаболизма.

У эукариот регуляция белкового синтеза еще сложнее и осуществляется на многих этапах от ДНК к белку. Но рассмотренные механизмы регуляции работы генов имеют место и у эукариот. Ж. Моно сказал: «Что хорошо и правильно для бактерий с генетической точки зрения, то правильно и для слона»

Например, образование некоторых ферментов индуцируется присутствием их субстрата:

1. наличие в крови алкоголя индуцирует в клетках печени усиленный синтез фермента, разрушающего алкоголь – алкогольдегидрогеназы.

2. действие половых гормонов при формировании вторичных половых признаков также основано на усилении транскрипции определенных генов.

3. по такому типу работают гены железистых клеток, вырабатывающие секреты для жизнедеятельности организма.

Если у бактерии на включение гена в работу требуется несколько минут, то у эукариот от нескольких часов до нескольких дней.

Включение и работа генов и оперонов зависят от ряда факторов:

1. Специализации клетки

2. Физиологического состояния

3. Возраста клетки

4. Условий внешней среды

5. Пространственной структуры ДНК (изгибы, петли, сверхспирали и т.д.)

6. Степени метилирования генов.

Показано, что гены материнских и отцовских хромомсом могут быть метилированы по – разному и это регулирует активность разных генов. Например, ген – индуцирующий образование опухолей. Если он передается потомству от отца, то транскрибируется только в сердце, а если от матери, то он вообще не экспрессируется. Исследования показали, что у самок этот ген метилирован, а у самцов – деметилирован.

Любой из этих факторов может оказать существенное влияние на процесс считывания генетической информации.

ФГБОУ ВПО «Пензенский государственный университет»

Педагогический институт им. В.Г.Белинского

Кафедра «Биология, методика преподавания биологии и БЖД»


Курсовая работа по дисциплине «Биология»

«. Строение оперона прокариот. . Активатор, промотор, оперон и терминатор. Стартовый кодон, терминатор»


Пенза-2013 г



Введение

Особенности организации генов про- и эукариот

Строение оперона прокариот

Регуляторные области и структурные гены

Активатор,промотор,оператор и терминатора

Стартовый кодон, терминатор

Заключение

Список литературы


Введение:


Исследование структуры гена и его экспрессия в настоящее время являются одним из главных направлений в современной генетике. Но, как это часто бывает при стремительном развитии какой-либо научной отрасли, громадный поток полученных фактов не сразу осмысливается, выявленные противоречия не сразу разрешаются, а введённая терминология не сразу признаётся. Одно и то же явление подчас имеет столько различных названий, что по ним без труда можно определить число исследователей изучавших данный феномен.

Примерно такое положение складывается сейчас в направлении, которое выясняет структуру и функцию отдельного гена и генома живых существ.

Существует множество определений гена, но ни одно из них полностью не удовлетворяет всех учёных. Мы будем придерживаться определения, которое дал Сингер М. и Берг П. в книге «Гены и геномы» (1998). Формулируется оно следующим образом. «Ген это - совокупность сегментов ДНК, обуславливающих образование либо молекулы РНК, либо белкового продукта». В этом определении, прежде всего, однозначно подчёркнуто, что ген это не один непрерывный отрезок ДНК, а совокупность нескольких сегментов (отрезков) ДНК. И, во-вторых, ген несёт информацию не только о строении полипептида, но и о строении какой-либо РНК. В этом случае он может не содержать информацию о строении белка.


Особенности организации генов про- и эукариот


Геном современных прокариотических клеток характеризуется относительно небольшими размерами. У кишечной палочки он представлен кольцевой молекулой ДНК длиной около 1 мм, которая содержит 4·106 пар нуклеотидов, образующих около 4000 генов. Основная масса ДНК прокариот (около 95%) активно транскрибируется в каждый данный момент времени. Как было сказано выше, геном прокариотической клетки организован в виде нуклеоида - комплекса ДНК с негистоновыми белками.

У эукариот объем наследственного материала значительно больше. У дрожжей он составляет 2,3 107 п.н., у человека общая длина ДНК в диплоидном хромосомном наборе клеток - около 174 см. Его геном содержит 3·109 п.н. и включает по последним данным 30-40 тыс. генов.

У некоторых амфибий и растений геном характеризуется еще большими размерами, достигающими 1010 и 1011 п. н. В отличие от прокариот в эукариотических клетках одновременно активно транскрибируется от 1 до 10% ДНК. Состав транскрибируемых последовательностей и их количество зависят от типа клетки и стадии онтогенеза. Значительная часть нуклеотидных последовательностей у эукариот не транскрибируется вообще - молчащая ДНК.

Большой объем наследственного материала эукариот объясняется существованием в нем помимо уникальных также умеренно и высоко повторяющихся последовательностей. Так, около 10% генома мыши составляют тандемно расположенные (друг за другом) короткие нуклеотидные последовательности, повторенные до 106 раз. Эти высоко повторяющиеся последовательности ДНК располагаются в основном в гетерохроматине, окружающем центромерные участки. Они не транскрибируются. Около 20% генома мыши образовано умеренными повторами, встречающимися с частотой 103-105 раз.

Такие повторы распределены по всему геному и транскрибируются в РНК. К ним относятся гены, контролирующие синтез гистонов, тРНК, рРНК и некоторые другие. Остальные 70% генома мыши представлены уникальными нуклеотидными последовательностями. У растений и амфибий на долю умеренно и высоко повторяющихся последовательностей приходится до 60% генома.

Избыточность генома эукариот объясняется также экзон-интронной организацией большинства эукариотических генов, при которой значительная часть транскрибированной РНК удаляется в ходе следующего за синтезом процессинга и не используется для кодирования аминокислотных последовательностей белков.

В настоящее время окончательно не выяснены функции молчащей ДНК, которая составляет значительную часть генома, реплицируется, но не транскрибируется. Высказывают предположения об определенном значении такой ДНК в обеспечении структурной организации хроматина. Некоторая часть нетранскрибируемых нуклеотидных последовательностей, очевидно, участвует в регуляции экспрессии генов.

Характеризуя наследственный материал прокариотической клетки в целом, необходимо отметить, что он заключен не только в нуклеоиде, но также присутствует в цитоплазме в виде небольших кольцевых фрагментов ДНК - плазмид. В прокариотических (бактериальных) клетках обнаружены плазмиды, которые несут наследственный материал, определяющий такие свойства, как способность бактерий к конъюгации, а также их устойчивость к некоторым лекарственным веществам.

В эукариотических клетках внехромосомная ДНК представлена генетическим аппаратом органелл - митохондрий и пластид, а также нуклеотидными последовательностями, не являющимися жизненно необходимыми для клетки (вирусоподобными частицами). Наследственный материал органелл находится в их матриксе в виде нескольких копий кольцевых молекул ДНК, не связанных с гистонами. В митохондриях, например содержится от 2 до 10 копий мтДНК.

Внехромосомная ДНК составляет лишь небольшую часть наследственного материала эукариотической клетки. Например, мтДНК человека содержит 16569 п.н. и на её долю приходится менее 1% всей клеточной ДНК.

В отличие от хромосомной ДНК, мтДНК характеризуется высокой «плотностью генов». В них нет интронов, а межгенные промежутки невелики. В кольцевой мтДНК человека содержится 13 генов, кодирующих белки (3 субъединицы цитохром С-оксидазы, 6 компонентов АТФазы и др.) и 22 гена тРНК. Значительная часть белков митохондрий и пластид синтезируется в цитоплазме под контролем геномной ДНК.

Если большинство ядерных генов представлены в клетках организма в двойной дозе (аллельные гены), то митохондриальные гены представлены многими тысячами копий па клетку.

Для генома митохондрий характерны межиндивидуальные различия, но в клетках одного индивида, как правило, мтДНК идентична. Совокупность генов, расположенных в цитоплазматических молекулах ДНК, называют плазмоном. Он определяет особый тип наследования признаков - цитоплазматическое наследование.

Общие принципы организации наследственного материала, представленного нуклеиновыми кислотами, а также принципы записи генетической информации у про- и эукариот свидетельствуют в пользу единства их происхождения от общего предка, у которого уже была решена проблема самовоспроизведения и записи информации на основе репликации ДНК и универсальности генетического кода. Однако геном такого предка сохранял большие эволюционные возможности, связанные с развитием надмолекулярной организации наследственного материала, разных путей реализации наследственной информации и регуляции этих процессов.

Многочисленные указания на различия в организации генома, деталях процессов экспрессии генов и механизмов ее регуляции у про- и эукариот свидетельствуют в пользу эволюции названных типов клеток по разным направлениям после их дивергенции от общего предка.

Существует предположение, что в процессе возникновения жизни на Земле первым шагом явилось образование самовоспроизводящихся молекул нуклеиновых кислот, не несущих первоначально функции кодирования аминокислот в белках. Благодаря способности к самовоспроизведению эти молекулы сохранялись во времени. Таким образом, первоначальный отбор шел на способность к самосохранению через самовоспроизведение. В соответствии с рассмотренным предположением позднее некоторые участки ДНК приобрели функцию кодирования, т.е. стали структурными генами, совокупность которых на определенном этапе эволюции составила первичный генотип.

Экспрессия возникших кодирующих последовательностей ДНК привела к формированию первичного фенотипа, который оценивался естественным отбором на способность выживать в конкретной среде.

Важным моментом в рассматриваемой гипотезе является предположение о том, что существенным компонентом первых клеточных геномов была избыточная ДНК, способная реплицироваться, но не несущая функциональной нагрузки в отношении формирования фенотипа. Предполагают, что разные направления эволюции геномов про- и эукариот связаны с различной судьбой этой избыточной ДНК предкового генома, который должен был характеризоваться достаточно большим объемом. Вероятно, на ранних стадиях эволюции простейших клеточных форм у них еще не были в совершенстве отработаны главные механизмы потока информации (репликация, транскрипция, трансляция). Избыточность ДНК в этих условиях создавала возможность расширения объема кодирующих нуклеотидных последовательностей за счет некодирующих, обеспечивая возникновение многих вариантов решения проблемы формирования жизнеспособного фенотипа.


Строение оперона прокариот


Оперон - способ организации генетического материала у прокариот, при котором цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки, объединяются под одним (или несколькими) промоторами. Такая функциональная организация позволяет эффективнее регулировать экспрессию (транскрипцию) этих генов.

Концепцию оперона для прокариот предложили в 1961 году французские ученые Жакоб и Моно, за что получили Нобелевскую премию в 1965 году.

Опероны по количеству цистронов классифицируют на моно-, олиго- и полицистронные, содержащие, соответственно, только один, несколько или много цистронов (генов).

В состав оперона прокариот входят структурные гены и регуляторные элементы. Структурные гены кодируют белки, осуществляющие последовательно этапы биосинтеза какого-либо вещества. Этих генов может быть один, два или несколько. Они тесно сцеплены друг с другом и, что самое главное, в ходе транскрипции работают как один единый ген: на них синтезируется одна общая молекула иРНК, которая лишь потом расщепляется на несколько иРНК, соответствующих отдельным генам. Регуляторными элементами являются следующие:

промотор - участок связывания фермента, осуществляющего транскрипцию ДНК - РНК-полимеразы. Является местом начала транскрипции. Представляет собой короткую последовательность из нескольких десятков нуклеотидов ДНК, с которой специфически связывается РНК-полимераза. Кроме того, промотор определяет, какая из двух цепей ДНК будет служить матрицей для синтеза иРНК;

оператор - участок, которому присоединяется репрессор, который не дает РНК-полимеразе двигаться по ДНК.

терминатор - участок, в котором РНК-полимераза отсоединяется от ДНК.

Лактозный оперон открыли Жакоб, Моно и Львов в 1961 г. Его работа:

Когда в среде нет лактозы, кишечная палочка не вырабатывает ферменты, необходимые для ее расщепления, потому что к оператору присоединен репрессор, который не дает происходить транскрипции.

Когда в среде появляется лактоза, то она соединяется с белком- репрессором, он денатурирует и отсоединяется от оператора. Теперь ничто не мешает РНК-полимеразе делать иРНК, на которой рибосомы тут же делают белки.

Белки-ферменты расщепляют лактозу, в том числе и ту, что была присоединена к репрессору, он возвращается на место, транскрипция прекращается.

На работу оператора данного оперона влияет самостоятельный ген-регулятор, синтезирующий соответствующий регуляторный белок. Этот ген не обязательно располагается рядом с опероном. Кроме того, один регулятор может регулировать транскрипцию нескольких оперонов. Ген-регулятор также имеет собственный промотор и терминатор.

Регуляторные белки бывают двух типов: белок-репрессор или белок-активатор. Они присоединяются к специфическим нуклеотидным последовательностям ДНК оператора, что либо препятствует транскрипции генов (негативная, отрицательная регуляция), либо способствует ей (позитивная, положительная регуляция); механизмы их работы противоположны. Кроме того, на работу белков-репрессоров могут влиять вещества - эффекторы: соединяясь с репрессором, они влияют на его взаимодействие с оператором.


Регуляторные области и структурные гены


Структурные гены - содержат информацию о структуре белка. У прокариот в одном опероне находятся гены нескольких белков, необходимых для осуществления какой-либо биохимической реакции.

Генетическая информация о структуре белков и нуклеиновых кислот у всех организмов заключена в молекулах ДНК или РНК в виде последовательностей нуклеотидов, называемых генами <#"290" src="doc_zip1.jpg" />


Такой тип регуляции синтеза фермента называется индукцией, а вещество, вызывающее этот синтез, - индуктором. Один из наиболее наглядных примеров данного типа регуляции - лактозный оперон кишечной палочки - группа генов, контролирующая синтез ферментов, осуществляющихкатаболизм молочного сахара - лактозы. Буквально через несколько минут после добавления в питательную среду для кишечной палочки лактозы бактерии начинают вырабатывать три фермента: галактозидпермеазу, бета-галактозидазу и галактозидтрансацетилазу. Как только ресурсы лактозы в среде исчерпываются, синтез ферментов сразу же прекращается.

Приведенный пример станет более понятным при рассмотрении схемы работы лактозного оперона (рис. 81), изучение которого позволило французским ученым Ф. Жакобу и Ж. Моно разработать собственно концепцию оперона и выяснить основные принципы регуляции транскрипции у прокариотов. Начинается оперон с участка A, предназначенного для присоединения некоего белка-активатора, в свою очередь необходимого для присоединения к следующему за участком А промотору (П) РНК-полимеразы. За промотором, последовательность нуклеотидов которого узнаётся РНК-полимеразой, следует оператор (О), играющий важную роль в транскрипции генов оперона, так как с ним связывается регуляторный белок-репрессор.

За оператором следуют структурные гены для трех упомянутых ранее ферментов. Заканчивается оперон терминатором, прекращающим продвижение РНК-полимеразы и транскрипцию оперона.

Регуляторный белок-репрессор в незначительном количестве синтезируется в клетке постоянно, так что в цитоплазме одновременно присутствует не более 10 его молекул. Этот белок обладает сродством к последовательности нуклеотидов в области оператора, и таким же сродством к лактозе. В отсутствие лактозы белок-репрёссор связывается с операторным участком и препятствует продвижению по ДНК РНК-полимеразы: не синтезируется мРНК, не синтезируются и ферменты. После добавления в среду лактозы белок-репрессор связывается с нею быстрее, чем с операторным участком: последний остается свободным и не препятствует продвижению РНК-полимеразы. Идет транскрипция и трансляция. Синтезирующиеся ферменты осуществляют транспорт в клетку и расщепление лактозы. После того как вся лактоза будет израсходована, нечем станет связывать белок-реп рессор и он снова свяжется с оператором, прекратив транскрипцию оперона. Таким образом, индукция оперона вызывается тем, что регуляторный белок не прикрепляется к оператору. Такой тип индукции называется негативным.

Другой известный тип индукции - позитивная индукция. Она свойственна другому оперену кишечной палочки, кодирующему ферменты катаболизма другого сахара - арабинозы. Этот оперон структурно очень похож на предыдущий. Разница в регуляции состоит в том, что добавленная в среду арабиноза взаимодействует с белком-репрессором и, освобождая операторный участок, одновременно превращает белок-репрессор в белок-активатор, способствующий присоединению РНК-полимеразы к промотору. В этих условиях транскрипция имеет место. Как только запасы арабинозы в среде исчерпываются, синтезирующийся белок-реп рессор опять связывается с оператором, выключая транскрипцию.

Кроме индукции, известны также два типа (негативный и позитивный) регуляции по принципу репрессии. Если при негативной индукции эффектор (индуктор) препятствует присоединению белка-репрессора к оператору, то при негативной репрессии, наоборот, эффектор придает регуляторному белку способность присоединяться к оператору. Если в первом случае соединение эффектора с белком-регулятором разрешало транскрипцию, то во втором оно запрещает ее. Примером негативной репрессии может служить хорошо изученный триптофановый оперон кишечной палочки.

В его состав входят пять структурных генов, обеспечивающих синтез аминокислоты триптофана, оператор и два промотора. Белок-регулятор синтезируется вне триптофанового оперона. Пока клетка успевает расходовать весь синтезирующийся триптофан, оперон работает, синтез триптофана продолжается. Если же в клетке появляется избыток триптофана, он соединяется с регуляторным белком и изменяет его таким образом, что этот белок приобретает сродство с оператором. Измененный белок-регулятор взаимодействует с оператором и препятствует транскрипции структурных генов, вследствие чего синтез триптофана прекращается. При позитивной репрессии эффектор лишает регуляторный белок способности связываться с оператором, обусловливая, таким образом, транскрипцию структурных генов.

Описанные типы регуляций характеризуют механизмы регуляции отдельных оперонов, практически не касаясь регуляции экспрессии генома в целом, в то время как совершенно очевидно, что регуляция разных оперонов должна носить согласованный характер. Такой согласованный характер работы разных оперонов и генов получил у вирусов и фагов название каскадной регуляции. Согласно принципу каскадной регуляции сначала происходит транскрипция «предранних», затем «ранних» и наконец «поздних» генов в зависимости от того, какие белки требуются на разных стадиях вирусной (фаговой) инфекции.

Конечно, принцип каскадной регуляции у фагов относится к наиболее простым. У более сложно организованных организмов для осуществления большого количества функций, происходящих одновременно или с определенной последовательностью, необходима согласованная работа многих генов и оперонов. Особенно это касается эукариотов, отличающихся не только более сложной организацией генома, но и многими другими особенностями механизмов регуляции генной активности.

По принципам регуляции гены эукариотов можно условно разделить на три группы: 1) функционирующие во всех клетках организма; 2) функционирующие только в тканях одного типа; 3) обеспечивающие выполнение специализированными клетками конкретных функций. Кроме того, у эукариотов известно одновременное групповое выключение генной активности, осуществляемое гистонами - основными белками, входящими в состав хромосом. Еще одним существенным отличием транскрипции у эукариотов является то, что многие мРНК длительное время сохраняются в клетке в виде особых частиц- информосом, в то время как мРНК прокариотов практически еще в процессе транскрипции поступают в рибосомы, транслируются, после чего быстро разрушаются.

Вместе с тем имеется много данных, указывающие, что транскрипция у эукариотов осуществляется с участков, подобных оперонам прокариотов и состоящих из регуляторных и структурных генов.

Отличительной особенностью оперонов эукариотов является то, что почти всегда они содержат только структурный ген, а гены, контролирующие различные этапы определенной цепи метаболических превращений, разбросаны по хромосоме и даже по разным хромосомам. Другой отличительной чертой оперонов эукариотов является то, что они состоят из значащих (экзонов) и незначащих (интронов) участков, чередующихся друг с другом. При транскрипции считываются как экзоны, так и интроны, а образующийся при этом предшественник информационного РНК (про-мРНК) затем претерпевает созревание (процессинг), в результате которого происходит вызревание интроиов и образование собственно мРНК (сплайсинг),

У эукариотов известны и другие типы регуляции активности генов, такие как эффект положения или дозовая компенсация. В первом случае речь идет об изменении генной активности в зависимости от конкретного окружения: перемещение гена из одного места хромосомы в другое может приводить к изменению активности как этого гена, так и близлежащих. Во втором случае нехватка одной дозы какого-либо гена (в первую очередь это относится к генам, локализованным в половых хромосомах гетерогаметного пола, когда одна из гомологичных половых хромосом либо генетически инертна, либо полностью отсутствует) фенотипически не проявляется за счет компенсаторного увеличения активности оставшегося гена. В целом же регуляция активности генов у эукариотов изучена недостаточно.


Активатор,промотор,оператор,терминатор


Единицей транскрипции у прокариот могут быть отдельные гены, но чаще они организованы в структуры, называемые оперонами. В состав оперона входят расположенные друг за другом структурные гены, продукты которых обычно участвуют водном и том же метаболическом пути. Как правило, оперон имеет один набор регуля-торных элементов (регуляторный ген, промотор, оператор), что обеспечивает координацию процессов транскрипции генов и синтеза соответствующих белков.

Промотор - это участок ДНК, ответственный за связывание с РНК-полимеразой. В случае прокариот, наиболее важными для регуляции транскрипции являются последовательности, обозначаемые «-35» и «- 10». Нуклеотиды, расположенные до инициирующего кодона («вверх по течению») записываются со знаком «-», а со знаком «+» - все нуклеотиды, начиная с первого в инициирующем кодоне (стартовая точка). Направление, в котором продвигается процесс транскрипции, называется «вниз по течению».

Последовательность, обозначаемая «-35» (TTGACA), отвечает за узнавание промотора РНК-полимеразой, а последовательность «-10» (или бокс Прибнова) является тем участком, с которого начинается раскручивание двойной спирали ДНК. В состав этого бокса наиболее часто входят основания ТАТААТ. Такая последовательность оснований чаще всего встречается в промоторах прокариот, ее называют консенсусной. В состав ТАТА-бокса входят аденин и тимин, между которыми имеются только две водородные связи, что облегчает расплетание цепей ДНК в этом районе промотора. В случае замен пар оснований в указанных последовательностях промотора нарушается эффективность и правильное определение точки начала транскрипции, с которой фермент РНК-полимераза начинает синтез РНК. У прокариот наряду с промотором имеются и другие регуляторные участки: это активатор и оператор.

Оператор - участок ДНК, с которым связывается белок-репрессор, мешая РНК-полимеразе начать транскрипцию.

В лактозном опероне левая часть промотора (активатор), связывается с белком-активатором катаболизма (БАК, или САР в английской терминологии, catabolite activator protein), а правая часть - с РНК-полимеразой. БАК-белок в отличие от белка-репрессора играет позитивную роль, помогая РНК-полимеразе начать транскрипцию.

Возможны различные варианты взаимодействия регуляторных участков с ферментами и регуляторными белками, а последних - с молекулами, называемыми индукторами (эффекторами).

Генетическая информация, закодированная в ДНК с помощью 4-х нуклеотидов (четырехбуквенного алфавита), в процессе биосинтеза белка переводится в последовательность аминокислот белков (двадцатибуквенный алфавит) с помощью молекул-адапторов («переводчиков») тРНК. Каждая из 20 аминокислот, входящих в состав белков, должна присоединится к своей тРНК. Эти реакции протекают в цитозоле и катализируются двадцатью ферментами АРСазами (аминоацил-тРНК-синтетазами). Каждый фермент имеет двойное сродство: к «своей» аминокислоте и к соответствующей ей тРНК (одной или нескольким). Для активации используется энергия АТФ.

Процесс состоит из двух стадий, протекающих в активном центре фермента. На первой стадии в результате взаимодействия аминокислоты и АТФ образуется аминоациладенилат, на второй - аминоацильный остаток переносится на соответствующую тРНК.
Ход реакций: .Аминокислота (R) +АТФ + фермент (ER E?) R (аминоацил-аденилат)+ФФН

ER (аминоациладенилат) + тРНКR Аминоацил-тРНК + АМФ + E?R
АРСазаR Суммарное уравнение:

Аминокислота (R) + тРНКR + АТФ аминоацил-тРНКR + АМФ + ФФН

Эфирная связь между аминоацилом и тРНК является высокоэнергетической, энергия используется в синтезе пептидной связи.

Так образуются в цитоплазме клетки все необходимые для биосинтеза белка активированные аминокислоты, соединенные с соответствующими им адапторами? разнообразные аминоацил-тРНК (аа-тРНК).

Терминатор (ДНК) <#"justify">Заключение


Прокариоты - это организмы, в клетках которых отсутствует оформленное ядро. Его функции выполняет нуклеоид (то есть «подобный ядру»); в отличие от ядра, нуклеоид не имеет собственной оболочки.

Тело прокариот, как правило, состоит из одной клетки. Однако при неполном расхождении делящихся клеток возникают нитчатые, колониальные и полинуклеоидные формы (бактероиды). В прокариотических клетках отсутствуют постоянные двумембранные и одномембранные органоиды: пластиды и митохондрии, эндоплазматическая сеть, аппарат Гольджи и их производные. Их функции выполняют мезосомы - складки плазматической мембраны. В цитоплазме фотоавтотрофных прокариот имеются разнообразные мембранные структуры, на которых протекают реакции фотосинтеза. Иногда их называют бактериальными хроматофорами.

Специфическим веществом клеточной стенки прокариот является муреин, однако у некоторых прокариот муреин отсутствует. Поверх клеточной стенки часто имеется слизистая капсула. Пространство между мембраной и клеточной стенкой служит резервуаром протонов при фотосинтезе и аэробном дыхании.

Размеры прокариотических клеток изменяются от 0,1-0,15 мкм (микоплазмы) до 30 мкм и более. Большинство бактерий имеет размеры 0,2-10 мкм. У подвижных бактерий имеются жгутики, основой которых служит белки флагеллины.

Главная количественная особенность генетического материала эукариот - наличие избыточной ДНК. Этот факт легко выявляется при анализе отношения числа генов к количеству ДНК в геноме бактерий и млекопитающих. Если средний размер гена бактерий 1500 пар нуклеотидов (п.н.), а длина кольцевой молекулы ДНК хромосомы Е. coli и В. subtilis составляет свыше 1 мм, то в такой хромосоме могут разместиться около 3 тысяч генов.

Примерно такое число генов было экспериментально определено у бактерий по числу типов иРНК.

Если это число умножить на средний размер гена, то получится, что около 95% генома бактерий состоит из кодирующих (генных) последовательностей. Остальные 5%, по-видимому, заняты регуляторными элементами. Иная картина наблюдается у эукариотических организмов. Например, у человека насчитывают приблизительно 50 тысяч генов (имеется в виду только суммарная длина кодирующих участков ДНК - экзонов). В то же время размер генома человека 3×109(три миллиарда) п.н. Это означает, что кодирующая часть его генома составляет всего 15…20 % от тотальной ДНК.

Существует значительное число видов, геном которых в десятки раз больше генома человека, например некоторые рыбы, хвостатые амфибии, лилейные. Избыточная ДНК характерна для всех эукариот. В этой связи необходимо подчеркнуть неоднозначность терминов генотип и геном. Под генотипом следует понимать совокупность генов, имеющих фенотипическое проявление, тогда как понятие генома обозначает количество ДНК, находящееся в гаплоидном наборе хромосом данного вида.


Список литературы:


1. Авраменко И.Ф. Микробиология. М. :Колос.- 1979.-176 с.

Мишустин Е.Н., Емцев В.Т. Микробиология. М.:Агропромиздат.- 1987.-336 с.

Бакулина Н.А. Микробиология. М.:Медицина.-1976.-325 с.

Сингер М., Берг П. Гены и геномы в 2-х т. Т 2. М.: Мир.- 1988.-391 с.

Коничев А.С. Молекулярная биология. М.: Издательский центр Академия.-2005-400 с.

Блохина И.Н. Геносистематика бактерий. М.: Наука.- 1976.-151 с.

Граммов Б.В. Строение бактерий. Л.: Издательство ЛГУ.- 1985.-190 с.

Пехов А.П. Генетика бактерий. М.:Медицина.-1977.-407 с.

Стент Г.С. Молекулярная генетика. М.:Мир.-1981.-646 с.

Рис Э., Стернберг М. Введение в молекулярную биологию: От клеток к атомам. М.: Мир.- 2002.-142 с.

Сергеева Г.М., Пашкова Е.И. Руководство для самостоятельной работы студентов по молекулярной биологии. Петропавловск: СКГУ им. М.Козыбаева.-2008.-234 с.

Хесин Р.Б. Непостоянство генома. М.:Наука.-1984.-472 с.

Под ред. Й. Ленглера, Г. Древса, Г. Шлегеля. Современная микробиология. Прокариоты. М.: Мир.- 2005.-469 с.

Ю.П.Алтухова. Современное естествознание. Энциклопедия. М.: Магистр-Пресс.- 2000.-343 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Геном эукариот более сложен, чем у прокариот и включает нуклеотидные последовательности хромосом, ДНК митохондрий и пластид (1-10 % от общего генома, у дрожжей до 20%), ДНК плазмид у дрожжей, ДНК латентных и дефектных вирусов.

Ядро эукариот хорошо выражено, имеется ядерная мембрана, окружающая хромосомы. Хромосом много, они парные, состоят из гомологичных хроматид, каждая из которых представляет двухцепочечную молекулу ДНК (набор хромосом диплоидный ). В составе хромосомы – 50 % ДНК и 50 % белков, которые представлены основными гистоновыми белками , входящими в состав нуклеосом, и кислыми белками , которые заполняют полость нуклеосом, разрыхляют ее и играют важную роль в распаде нуклеосом перед началом транскрипции и репликации.

В релаксированном состоянии хромосомы эукариот могут достигать нескольких сантиметров (у человека до 5 см в длину). Существуют несколько стадий конденсации хромосом, в результате чего хромосома компактизируется, накручивается на нуклеосомы и образует более сложные свернутые структуры.

Стадии компактизации (конденсации) хромосом . Акты конденсации и деконденсации хромосом сменяют друг друга в клеточном цикле: в интерфазе ДНК выглядит в виде вытянутых спутанных нитей и получила название - хроматин . В этом состоянии ДНК частично релаксирована, что облегчает прохождение процесса транскрипции и репликации. Для расхождения (сегрегации ) хромосом в митозе очень важно, чтобы хромосомы были суперспирализованы – конденсированы. Для этого в начале профазы митоза ДНК начинает компактизоваться с помощью положительной и отрицательной суперспирализации, а также путем накручивания на нуклеосомы. Нуклеосомная нить ДНК напоминает бусы, в которых нить (суперспирализованная молекула ДНК) намотана на бусинки (нуклеосомы).

Рис. 3.1. Cтадии компактизации хроматина

Нуклеосома – октомер из 8 субъединиц белков-гистонов, включающая по 2 молекулы гистонов Н2А, Н2В, Н3, Н4. Диаметр нуклеосомы - 11 нм, высота - 5,7 нм. По краям от нуклеосом имеются свободные участки ДНК в 20-90 пар нуклеотидов – линкеры . Гистон Н1 не входит в состав нуклеосомы, а фиксирует петли линкеров, удерживая ДНК на нуклеосоме. Такое нуклеосомное строение хромосом характерно только для линейных хромосом эукариот.

В результате спирализации и накручивания на нуклеосомы хромосомы укорачиваются и превращаются в метафазные хромосомы (стадия метафазы), сокращаясь в длину в 10000 раз, а в диаметре – примерно в 700 раз. Это способствует нормальному расхождению (сегрегации) хромосом в анафазе митоза. Рентгеноструктурный анализ позволил выявить следующие стадии компактизации ДНК.

1-ая стадия - двухцепочечная спираль ДНК (диаметр – 2 нм), обычно в правозакрученной В-форме.

2-ая стадия – нуклеосомная нить (диаметр – 11нм). ДНК наматывается на частички нуклеосом, образуя на них 1,75 витка (146 пар нуклеотидов).

3-ая стадия – образование хроматиновой фибриллы (диаметр 30 нм). Нуклеосомы сближаются друг с другом, образуется зигзагообразная «лента», которая скручивается в соленоид – спираль с полостью внутри.

4-ая стадия – образование петлевых доменов (диаметр 300 нм) формируется путем формирования петель из нити соленоида.

5-ая стадия – образование метафазных хромосом, которые получили название «ламповых щеток» (диаметр 1400 нм).

Избыточность геномов эукариот. Только незначительная часть ДНК у эукариот представлена структурными и регуляторными генами, остальная часть генома представляет собой «эгоистичную» (сателлитную) ДНК, которая очевидно попала в геном эукариот путём интеграции вирусов и других мобильных генетических элементов. В геноме человека насчитывается 3,5 х 10 9 пар нуклеотидов. Геномы млекопитающих различаются, но имеют близкие значения молекулярной массы хромосом, достигающие сотен миллиардов Да. В соответствии с величиной генома у человека должно бы было быть 150000 и более генов, однако в 2003 г. американские ученые заявили о существовании 30000 генов, в последние годы предполагается наличие 75 тыс. генов, остальная часть геномной ДНК очевидно является “генетическим мусором”. Значительная часть генома представлена некодирующими последовательностями. У человека некодирующие последовательности составляют 80-85% (по другим данным – 92%), а у растений – до 90% и более, т.е. характерна избыточность генома .

В геноме эукариот выделяют следующие типы последовательностей ДНК :

1)многократно повторяющиеся последовательности, которых насчитывается более 10 5 повторов на геном. Чаще всего это блоки из 5-8 нуклеотидов, которые тандемно повторяются и образуют фрагменты в 150-500 пар нуклеотидов, например - (ААТАТ)30-100. Функция их до конца неизвестна, но предполагают, что они могут играть роль в регуляции работы генов – находятся в области центромер, теломер, интронов, транспозонов. Это последовательности: Alu, B1 , B2, L1. Среди многократно повторяющихся последовательностей очень часто встречаются сайты рестрикции в составе палиндромов (см. дальше - тема «Репарации»). Сайты рестрикции могут быть теми горячими точками, куда встраиваются плазмиды, транспозоны, вирусные ДНК, трансгены.

2) умеренно повторяющиеся последовательности – встречаются на геном от 10 до10 5 . К ним относятся последовательности, кодирующие гистоны, рибосомальные белки, р-РНК и т-РНК, IS-элементы, вставочные последовательности.

3) мультигенные семейства – это группы близких по структуре и функциям генов, которые «включаются» на разных этапах онтогенеза. Например b-цепь гемоглобина кодируется 7 генами, 2 из которых дефектные (псевдогены), остальные 5 включаются последовательно на разных этапах развития: в раннем эмбриогенезе, в плодном периоде (8-9 недель), в детском, юношеском и зрелом возрасте.

4) уникальные гены - специфические гены, которые кодируют синтез структурных и ферментных белков.

Структура генов эукариот. Гены эукариот имеют регуляторные элементы подобные прокариотам - промоторную и терминаторную зоны, между которыми располагается последовательность ДНК, непосредственно кодирующая белок. Регуляторные элементы генов очень важны, поскольку именно благодаря им гены «включаются» только тогда, когда есть необходимость в соответствующих белковых продуктах. Промоторная зона обеспечивает начало транскрипции и трансляции, а терминаторная зона – конец этих процессов.

В промоторах можна выделить следующие консервативные последовательности: ГЦ-мотив, ЦААТ, ТАТА, АГГАГ, инициирующий кодон АТГ (АУГ на РНК). Далее идет структурная часть гена, которая состоит из экзонов и интронов. За структурной частью гена следует зона терминатора, представленная терминирующим кодоном ТТА (ТАГ или ТГА) и терминатором. На рис. 3.1. представлены основные участки гена эукариот.

Рис. 3.2. Тонкая структура гена эукариот

Обозначения и пояснения к рис. 3.2.

Функции основных регуляторных элементов гена

· ГЦ-мотив один из наиболее часто встречающихся регуляторных элементов гена. Представлен палиндромом ГГЦГГГ / ЦЦЦГЦЦ , встречается в генах общих функций, то есть тех, которые экспрессируются во всех клетках организма и играют важную роль в их жизнеобеспечении. Этот участок является, очевидно, оператором транскрипции. Присоединение к ГЦ-мотиву белка-регулятора SP1, увеличивает транскрипцию в 10-20 раз.

· ЦААТ – участок промотора гена, который, по всей видимости, распознается РНК- полимеразой перед началом транскрипции. Очевидно, этот участок выполняет ту же функцию, что у прокариот ТТГАЦА (блок Гилберта) . ЦЦААТ встречается в тканеспецифичных генах, то есть тех, которые экспрессируются только в некоторых тканях и органах. Так, ген инсулина включается в основном только в клетках островков Лангерганса поджелудочной железы, ген альфа-фетопротеина - у взрослого человека только в клетках печени.

· блок Хогнеса - ТАТА (ТАТАААА или ТАТААТА) , подобен блоку Прибнова (ТАТААТ) у прокариот, служит для присоединения РНК-полимеразы к ДНК в промоторной зоне, его положение в гене относительно нулевой точки начала транскрипции – (-30).

· центр связывания с рибосомой содержит редуцированную последовательность Шайна-Дальгарно АГГАГ (см. функции последовательности Шайна-Дальгарно АГГАГГ у прокариот, тема «Геномы прокариот»).

· инициирующий кодон представлен триплетом АТГ (АУГ – на РНК), транскрибируется в составе информационной РНК, с него начинается трансляция. При синтезе полипептида на рибосоме этому кодону соответствует аминокислота метионин. С метионина начинается синтез большинства белков.

· структурная часть гена – это последовательность ДНК, которая непосредственно кодирует сам белок. У эукариот, в отличие от прокариот, она не цельная, а состоит из экзонов (кодирующих участков) и интронов (вставочных некодирующих участков).

· терминирующий кодон - участок, который транскрибируется на и-РНК и обеспечивает окончание трансляции на рибосомах. На ДНК представлен нонсенс-кодонами - триплетами ТАА, ТАГ, ТГА, на РНК им соответствуют УАА, УАГ и УГА. Этим триплетам не соответствует ни одна из аминокислот, поэтому на них в рибосоме обрывается синтез полипептида.

· терминаторный участок очевидно представлен в каждом гене специфической нуклеотидной последовательностью.

В геноме эукариот обнаружили также специфические регуляторные последовательности, которые могут выступать в роли энхансеров – усилителей транскрипции, а также последовательности, которые выступают в роли сайленсеров – глушителей транскрипции. Они могут находиться на значительном удалении от гена, который регулируют, причем, одни и те же последовательности в одной клетке могут быть энхансерами, а в другой - сайленсерами. С их помощью регулируется экспрессия генов.

Обнаружены также регуляторные белки, способные связываться с промоторной зоной гена и обеспечивающие либо активацию, либо подавление транскрипции. Так, регуляторный белок SP1, связываясь с ГЦ-мотивом, может усиливать транскрипцию в 10-20 раз.

Устройство генов эукариот. Гены эукариотических организмов обладают следующими характеристиками:

Одиночные, т.е. в отличие от прокариот, не собраны в опероны;

Иногда олигомерные (представлены генами-кластерами);

Прерывистые, т.е. разделены на интроны и экзоны;

Перекрывающиеся, т.е. в пределах одного генного участка ДНК может функционировать несколько рамок считывания.

Генетический анализ у эукариот, в частности у их простейших представителей – дрожжей и нейроспоры, показал, что гены, контролирующие различные этапы одного и того же пути метаболизма, как правило, хаотично разбросаны по геному и обычно не образуют скоплений подобно оперонам бактерий. Однако было найдено несколько исключений, а именно: компактный участок ДНК у грибов контролирует 3 реакции в биосинтезе гистидина. Сходная ситуация обнаружена при изучении генетического контроля биосинтеза ароматических аминокислот (триптофана, тирозина, фенилаланина), а также – жирных кислот. У исследователей создалось впечатление, что они имеют дело с опероноподобной структурой, кодирующей мультиэнзимный комплекс. В действительности же оказалось (при использовании мутационного анализа), что у грибов все 5 этапов биосинтеза ароматических аминокислот контролирует 1 ген, продуктом которого является длинная полипептидная цепь массой 150 000 Д. Это не оперон, а ген-кластер (cluster-gene) . Такие гены-кластеры довольно часто встречаются у эукариот. В качестве примеров можно привести следующие гены-кластеры:

· his 4 – ген-кластер для биосинтеза гистидина у дрожжей-сахаромицетов, кодирует единый полипептид с тремя ферментативными активностями;

· arom 1 – ген-кластер для биосинтеза ароматических аминокислот у нейроспоры, кодирует единый полипептид с пятью ферментативными активностями;

· fas 1 – первый ген-кластер для биосинтеза жирных кислот у дрожжей-сахаромицетов, кодирует полипептид с тремя ферментативными активностями

· fas 2 – второй ген-кластер для биосинтеза жирных кислот у дрожжей-сахаромицетов, кодирует единый полипептид с пятью ферментативными активностями.

Существование генов-кластеров является примером молекулярной олигомеризации . Очевидно, считывание с гена-кластера информации сразу о нескольких ферментах метаболического пути является для клетки “экономически” более выгодным, как и в оперонах прокариот. В отличие от оперона бактерий, в генах-кластерах в результате транскрипци и последующей трансляции на рибосомах синтезируется одна длинная молекула полипептида, в которой отдельные домены после пространственной укладки в третичную структуру начинают выполнять функции отдельных ферментов. В оперонах прокариот отдельные гены оперона обычно транслируются в самостоятельные белковые продукты.

Большинство же генов эукариот – одиночные, т. е в ходе эволюции эукариот происходила автономизация генов. По-видимому, это создает благоприятные условия для раздельной, а значит, и более тонкой регуляции функций отдельных генов. Напомним, что у прокариот регуляции зачастую подвержены сразу все гены оперона, за исключением аутогенного котроля, когда ген-регулятор находится среди структурных генов внутри оперона и позволяет регулировать оперон отдельными блоками.

Гены эукариот прерывистые , а именно, состоят из кодирующих участков – экзонов , и не кодирующих – интронов. Такую структуру генов называют интрон-экзонной или мозаичной структурой. Длина экзонов достигает 1000 пар нуклеотидов, а интронов – обычно 5000-20000 пар нуклеотидов. Структурная часть гена может включать 2-3 (иногда более) экзонов, разделенных длинными интронами. И хотя интронов обычно бывает немного, число их у разных видов и в разных генах может колебаться от 0 (в генах гистонов) до 51 (в структурном гене коллагена). Экзонов всегда больше, чем интронов, но на долю интронов приходится в 5-7 раз больше нуклеотидных пар, чем на долю экзонов, поскольку интроны длиннее. В зависимости от количества экзонов и интронов, а также от их длины зависит длина гена эукариот. У разных организмов она может сильно варьировать. Так, у дрозофилы средняя длина гена составляет 2 тис. п. н., а длина гена фиброина шелка у шелковичного червя достигает 16 тис. п.н.

Существование интронов в структурной части гена создает определенные трудности для реализации генетической информации, так как в транскрибируемой и-РНК оказываются «лишние» участки ДНК, которые впоследствии не должны транслироваться на рибосомах. Как же в клетке эукариот решается эта проблема? Решение было найдено американским ученым Филиппом Шарпом из Массачусетского технологического института, который открыл явление сплайсинга (от англ. to splace – сшивать без узлов).

Механизм сплайсинга. Сначала в ядре с участка хромосомы (гена) транскрибируется полностью последовательность ДНК с формированием про-и-РНК – незрелой, более длинной РНК, которая содержит как экзоны, так и интроны. Далее, когда про-и-РНК направляется из ядра в цитоплазму, при прохождении ядерной мембраны происходит сплайсинг -созревание про-и-РНК, в результате которого вырезаются интроны, а экзоны сшиваются между собой с помощью фермента, получившего название матураза . Для осуществления сплайсинга важную роль играют особые sРНК (длиной до 160 нуклеотидов), которые стягивают между собой концы интронов, что способствует их вырезанию и последующему сшиванию экзонов. В цитоплазму на рибосомы для трансляции поступает уже зрелая и-РНК, в которой нет интронов.

Интроны не всегда являются некодирующими участками. Так, у дрожжей в генах митохондрий обнаружены интроны, кодирующие синтез фермента матуразы, который участвует в вырезании интронов. В некоторых генах дрожжей обнаружены интроны, кодирующие цитохром В и т.д.

Сплайсинг осуществляется белковыми комплексами, получившими название сплайсосомы. В состав сплайсосом, помимо уже названных матураз и sРНК, входят еще белки, придающие про-и-РНК нужную конформацию. Кроме того, сплайсосома связана с ферментами, осуществляющими полиаденилирование 3 / -конца и-РНК.

Типы сплайсинга : простой; альтернативный; транссплайсинг; аутосплайсинг.

Простой сплайсинг характерендля простых генов, последовательность экзонов которых предназначена для синтеза только одного белка. В таких генах экзоны занимают на ДНК всегда фиксированное положение и удаление интронов всегда ведется в четко обозначенных точках.

Альтернативный сплайсинг характерен для генных участков, на которых закодированы сразу несколько белков. При этом одни и те же участки выступают то экзонами, то интронами. Так на одном участке ДНК кодируется нейропептид гипофиза и гормон паращитовидной железы. В зависимости от вырезания тех или иных участков ДНК образуется и-РНК, кодирующая тот или иной белок. Альтернативный сплайсинг имеет место при синтезе иммуноглобулинов (антител) и при синтезе антигенов тканевой совместимости (МНС).

Транссплайсинг п роисходит, если в одну молекулу и-РНК объединяются экзоны из разных генов. Характерен для синтеза компонентов цитоскелета клетки.

Аутосплайсинг обнаружен впервые в макронуклеусе инфузорий, а позже у бактерий, дрозофил и других эукариот. Аутосплайсинг – самонарезание про-и-РНК без участия матураз и других ферментов. РНК, которая сама вырезает из себя интроны, получила название рибозим . Аутосплайсинг свидетельствует о том, что первой молекулой, несущей генетическую информацию, в эволюции была РНК. Она выполняла и генетическую и каталитическую функции, переданные позднее ДНК и белкам соответственно.

Как же в структуре генов образовались некодирующие интроны? Существует гипотеза, что еще на заре эволюции эукариот, они заражались вирусами и за счет интеграции в геном вирусной ДНК в хромосомах появилась избыточная сателлитная (эгоистическая) ДНК . Она присутствует не только в интронных последовательностях генов, но и разбросана по всей длине хромосом в виде огромных вставок некодирующих последовательностей.

У эукариот, так же как и у вирусов, встречаются перекрывающиеся гены , а именно на одном и том же участке ДНК с разных точек (и/или на разных цепях) может начинаться транскрипция с образованием разных и-РНК, кодирующих разные полипептиды.

Репликация у эукариот множественная, в каждой хромосоме существует 20-100 сайтов начала репликации и соответствующее число репликонов. Репликация в них может идти не одномоментно, однако деление клетки не начинается, пока не реплицированы все хромосомы на всем их протяжении. Подробно репликация рассмотрена в отдельной лекции (см. выше).

Транскрипция и трансляция у эукариот разобщены из-за наличия ядерной мембраны, а именно, транскрипция осуществляется в ядре, а образующаяся при этом информационная РНК должна транспортироваться из ядра в цитоплазму для последующего синтеза белка (трансляции) на рибосомах. Уже говорилось о том, что при преодолении ядерной мембраны происходит сплайсинг, т.е. созревание и-РНК. На все эти процессы необходимо время, поэтому от момента инициации транскрипции до появления белкового продукта в процессе трансляции проходит 6-24 часа. Для сравнения: у прокариот это время составляет 2-3 минуты.

Вспомните, какое вещество является носителем наследственной информации у живых организмов. Повторите, что такое ген. Какие бывают типы генов? в чем разница между структурными и регуляторными генами?

Схема строения гена

У всех генов схема строения одинакова. Они состоят из нескольких участков (рис. 20.1). Главным участком любого гена является тот, который содержит информацию о строении молекулы белка или РНК (генного продукта). Это кодирующая часть гена. Остальные участки гена — некодирующие. Они не содержат информации о строении молекул, синтез которых обеспечивает ген. Но они отвечают за работу гена.

Некодирующими участками гена являются промотор и терминатор. Промотор — это участок гена, откуда начинается синтез РНК, терминатор — участок, где этот синтез заканчивается. Кроме того, в состав гена входят регуляторные участки, которые регулируют его работу.

Гены прокариот

У генов прокариот относительно простая структура. Чаще всего каждый из этих генов содержит информацию только об одной структуре — молекуле белка или РНК.

Гены прокариотических организмов часто организованы в оперо-ны. Оперон — структура, состоящая из нескольких структурных генов (рис. 20.2). Он позволяет прокариотам за один раз синтезировать продукты сразу нескольких генов. Структурные гены в опероне расположены друг за другом и на всех — один общий промотор, один общий терминатор и один общий оператор, который регулирует его работу.

Примером оперона может быть лактозный оперон кишечной палочки. Он содержит гены, кодирующие ферменты, необходимые для синтеза углевода лактозы.

Гены эукариот

В отличие от генов прокариот гены эукариотических организмов не образуют оперонов. У каждого из них — свои собственные промотор и терминатор. Кроме того, строение этих генов более сложное. в их составе есть участки ДНК, которые не содержат информации, необходимой для синтеза генного продукта (молекулы белка или РНК). Такие участки называют интронами. Те участки, которые содержат нужную информацию, называют экзонами. Обычно эукариотический ген содержит несколько интронов и экзонов (рис. 20.3).

Важными компонентами эукариотических генов являются регуляторные участки. С помощью этих участков клетка может ускорять или замедлять синтез генных продуктов. Такое строение позволяет эукариотическим организмам очень тонко регулировать работу генов.


Для функционирования генов живых организмов необходимо наличие специальных участков для старта (промотор), регуляции и завершения (терминатор) считывания информации. Гены прокариотических организмов могут объединяться в специальные группы — опероны, у которых есть общие промотор, оператор и терминатор. Гены эукариотических организмов содержат некодирующие (интроны) и кодирующие (экзоны) участки ДНК. Кроме того, у этих генов есть регуляторные участки, которые изменяют скорость их работы.

Проверьте свои знания

1. Зачем генам нужен промотор? 2. Для чего генам нужен терминатор? 3. Что такое оперон? 4. Что такое интроны? 5. Сравните между собой гены прокариот и эукариот.

Это материал учебника