Клеточное дыхание происходит только днем. Биофизика клеточного дыхания. Бескислородный этап энергетического обмена

Которых в результате процесса образуется 38 и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма . О физиологических процессах транспортировки к клеткам многоклеточных организмов кислорода и удалению от них углекислого газа см. статью Дыхание .

Схема гликолиза

Использование различных начальных субстратов

В качестве исходных субстратов дыхания могут выступать различные вещества, преобразуемые в ходе специфических метаболических процессов в Ацетил-КоА с высвобождением ряда побочных продуктов. Восстановление НАД (НАДФ) и образование АТФ может происходить уже на этом этапе, однако большая их часть образуется в цикле трикарбоновых кислот при переработке Ацетил-КоА.

Гликолиз

Гликолиз - путь ферментативного расщепления глюкозы - является общим практически для всех живых организмов процессом. У аэробов он предшествует собственно клеточному дыханию, у анаэробов завершается брожением . Сам по себе гликолиз является полностью анаэробным процессом и для осуществления не требует присутствия кислорода .

Первый его этап протекает с высвобождением 2 молекул АТФ и включает в себя расщепление молекулы глюкозы на 2 молекулы глицеральдегид-3-фосфата . На втором этапе происходит НАД -зависимое окисление глицеральдегид-3-фосфата, сопровождающееся субстратным фосфорилированием , то есть присоединением к молекуле остатка фосфорной кислоты и формированием в ней макроэргической связи, после которого остаток переносится на АДФ с образованием АТФ .

Таким образом, уравнение гликолиза имеет следующий вид:

Глюкоза + 2НАД + + 4АДФ + 2АТФ + 2Ф н = 2ПВК + 2НАД∙Н + 2 АДФ + 4АТФ + 2H 2 O + 4Н + .

Сократив АТФ и АДФ из левой и правой частей уравнения реакции, получим:

Глюкоза + 2НАД + + 2АДФ + 2Ф н = 2НАД∙Н + 2ПВК + 2АТФ + 2H 2 O + 4Н + .

Окислительное декарбоксилирование пирувата

Образовавшаяся в ходе гликолиза пировиноградная кислота (пируват) под действием пируватдегидрогеназного комплекса (сложная структура из 3 различных ферментов и более 60 субъединиц) распадается на углекислый газ и ацетальдегид , который вместе с Коферментом А образует Ацетил-КоА . Реакция сопровождается восстановлением НАД до НАД∙Н .

У эукариот процесс протекает в матриксе митохондрий .

β-окисление жирных кислот

Наконец, на четвёртой стадии образовавшаяся β-кетокислота расщепляется β-кетотиолазой в присутствии кофермента А на ацетил-КоА и новый ацил-КоА, в которой углеродная цепь на 2 атома короче. Цикл β-окисления повторяется до тех пор, пока вся жирная кислота не будет переработана в ацетил-КоА.

Цикл трикарбоновых кислот

Суммарное уравнение реакций:

Ацетил-КоА + 3НАД + + ФАД + ГДФ + Ф н + 2H 2 O + КоА-SH = 2КоА-SH + 3НАДH + 3H + + ФАДН 2 + ГТФ + 2CO 2

У эукариот ферменты цикла находятся в свободном состоянии в матриксе митохондрий, только сукцинатдегидрогеназа встроена во внутреннюю митохондриальную мембрану.

Окислительное фосфорилирование

Основное количество молекул АТФ вырабатывается по способу окислительного фосфорилирования на последней стадии клеточного дыхания: в электронтранспортной цепи. Здесь происходит окисление НАД∙Н и ФАДН 2 , восстановленных в процессах гликолиза, β-окисления, цикла Кребса и т.д. Энергия, выделяющаяся в ходе этих реакций, благодаря цепи переносчиков электронов, локализованной во внутренней мембране митохондрий (у прокариот - в цитоплазматической мембране), трансформируется в трансмембранный протонный потенциал. Фермент АТФ-синтаза использует этот градиент для синтеза АТФ, преобразуя его энергию в энергию химических связей. Подсчитано, что молекула НАД∙Н может дать в ходе этого процесса 2.5 молекулы АТФ, ФАДН 2 - 1.5 молекулы.

Конечным акцептором электрона в дыхательной цепи аэробов является кислород .

Анаэробное дыхание

Если в электронтранспортной цепи вместо кислорода используется другой конечный акцептор (трёхвалентное железо , нитрат - или сульфат -анион), дыхание называется анаэробным. Анаэробное дыхание свойственно в основном бактериям , которые благодаря этому играют важную роль в биогеохимическом цикле серы, азота и железа.

Повторите особенности строения митохондрий, которые вы изучали в предыдущей теме. в клетках каких организмов имеются митохондрии? Для чего они нужны? Из курса химии вспомните, что такое окисление.

Что такое клеточное дыхание

Клеточное дыхание — это совокупность реакций окисления органических веществ кислородом, которые происходят в клетках живых организмов. Оно обеспечивает клетку энергией.

Следует отметить, что клеточное дыхание и легочное дыхание — это не одно и то же. Легочное дыхание — это физиологический процесс, в результате которого определенные газы попадают из воздуха в кровь или из крови в воздух. А клеточное дыхание — это биохимический процесс, совокупность химических реакций в клетках.

Клеточное дыхание состоит из двух этапов. Первый из них (гликолиз) происходит в цитозоле, а второй (кислородный) — в митохондриях. У растений во время клеточного дыхания окисляются органические вещества, синтезированные самим растением, у животных и грибов — вещества, которые организм получает с питанием или которые синтезирует сам.

Биохимические процессы клеточного дыхания

Общая формула биологического окисления выглядит так:

В результате первого этапа этого процесса (гликолиза), который происходит в цитозоле, образуется пируват (пировиноградная кислота). Он транспортируется из цитозоля в матрикс митохондрий, где с помощью ферментов окисляется до углекислого газа и воды. Окисление происходит в несколько этапов, на каждом из которых выделяется энергия. Часть энергии выделяется в виде тепла (45 %), а 55 % запасается в АТФ.

Эффективность клеточного дыхания

Ключевым этапом клеточного дыхания является цикл Кребса (цикл трикарбоновых кислот). Именно в реакциях этого цикла образуются соединения, которые являются источником протонов и электронов для процесса окисления. Клеточное дыхание является чрезвычайно эффективным процессом. Еще на первом этапе клеточного дыхания — гликолизе — из одной молекулы глюкозы клетка получает две молекулы АТФ, а на последующих этапах клеточного дыхания к ним добавляются еще 36 молекул (рис. 15.1).


Клеточное дыхание — это биохимический процесс, который происходит в митохондриях. в ходе этого процесса органические вещества, образовавшиеся при гликолизе, окисляются кислородом, который поступает в клетки из окружающей среды. Часть энергии, которая при этом выделяется, запасается клетками в виде молекул АТФ.

Проверьте свои знания

1. Что такое клеточное дыхание? 2. Где происходит клеточное дыхание? 3. Какие биохимические процессы происходят во время клеточного дыхания? 4*. Сравните процессы клеточного дыхания и обычного горения. Найдите черты сходства и отличия.

Это материал учебника

Клеточное дыхание

Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобожденная биологически полезная энергия используется на жизнедеятельность клетки.

Биологически полезная энергия представляет собой поток электронов, идущий с более высоких энергетических уровней на более низкие. Происходит это так: под действием фермента от молекулы питательного вещества (углевода, жира, белка) отнимаются протоны (то есть атомы водорода), а вместе с ними и электроны. Этот процесс известен под названием дегидрирования. Отнятые электроны передаются на специальное вещество, которое называется акцептором. Далее другие ферменты отнимают электроны от первичного акцептора и передают их на другой и так далее, пока полностью не израсходуется энергия электрона или не запасется в виде энергии химических связей (аденозинтрифосфат). В конечном счете кислород реагирует с ионами водорода и отдавшими энергию электронами, превращается в воду, которая выводится из организма. Этот поток электронов получил название «электронного каскада». Для большей наглядности его можно представить в виде ряда водопадов, каждый водопад вращает турбину – отдает энергию, пока не отдаст ее полностью. На самом верху «вода» – пищевое вещество, от которого будут отниматься электроны и протоны (субстрат), а внизу – «отработавшая вода» – электроны и протоны с пониженной энергетикой, соединенные с кислородом (вода), и то, что остается от субстрата, – которая подлежит выделению.

Теперь рассмотрим этот же процесс с позиции деструктуризации (энтропии, то есть распада). Каждая молекула пищевого вещества имеет свою собственную пространственную структуру. При дегидрировании тот или иной фермент может отщепить лишь определенные атомы водорода, занимающие определенное пространственное положение в молекуле. В результате ряда таких последовательных отщеплений вещество со сложной структурой разрушается до простых составляющих. Энергия связи, освобождаясь, используется нашим организмом на собственное укрепление: поддерживает собственные структуры белков, жиров, углеводов и т. д. Таким образом, деструктуризируя пищевые вещества, организм поддерживает на стабильном уровне структуры собственного тела.

Если пища уже была ранее деструктурирована (термическая обработка, солка, сушка, рафинизация, измельчение и т. д.), то нашему организму достанется гораздо меньше энергии, заключенной в оставшихся пространственных связях. Поэтому мощь питания заключается не в калориях, а в структуре пищи. Продолжительность жизни зависит не от сытой пищи, а от структурированной.

Итак, клеточное дыхание представляет собой процесс выработки электронов, то есть электроэнергии. Э. Болл сделал расчеты, показывающие, сколько электрической энергии вырабатывается в организме при расщеплении субстратов до воды и углекислого газа. Исходя из потребления кислорода организмом взрослого человека в состоянии покоя (264 см 3 /мин), а также того факта, что каждый атом кислорода для образования молекулы воды требует двух атомов водорода и двух электронов, Болл подсчитал, что в каждую минуту во всех клетках тела с молекул усвоенных питательных веществ в процессе биологического окисления на кислород переходит 2,86 ? 1022 электронов, то есть суммарная сила тока достигает 76 ампер. Это внушительная величина: ведь через обычную 100?ваттную лампу проходит ток лишь около 1 ампера.

Переходу электронов с субстрата на кислород соответствует разность потенциалов 1,13 вольта; вольты, помноженные на амперы, дают ватты, так что 1,13 ? 76 = 85,9 ватта.

Таким образом, мощность потребления человеческим организмом приблизительно равна мощности, потребляемой стоваттной электролампой, однако при этом в организме используются значительно большие токи при значительно меньших напряжениях.

Исходя из вышеизложенного, уясним для себя роль каждого вещества в жизненном процессе. Питательные вещества служат для построения структур нашего тела, а подвергшиеся деструктуризации – дают нам энергию в виде электронов. Конечные продукты деструктуризации питательных веществ: вода дает нам среду для протекания жизненных процессов; углекислый газ является регулятором жизненных процессов (изменяет кислотно-щелочное равновесие, активирует генетический аппарат клетки, влияет на усвоение кислорода организмом). Кислороду, потребляемому при дыхании, отводится скромная роль выводить из организма электроны с пониженным энергетическим потенциалом в виде продуктов конечного звена деструктуризации: углекислого газа и воды.

С позиции биогенных элементов углерод (18 %) является связкой, которая соединяет кислород (70 %) и водород (10 %). Не азот, а углерод является фундаментом жизни, поэтому организм всеми силами стремится к его сохранению, ориентируя весь дыхательный процесс на стабильное сохранение углерода в виде углекислого газа и других его соединений. Уменьшение в организме углерода и его соединений сразу же сказывается на всех жизненно важных процессах, вызывая массу заболеваний.

Вот так осуществляется третья ступень дыхания – клеточное дыхание. Причем наибольшее количество углекислого газа получается при приеме углеводистой пищи, а наименьшее – от жирной и белковой.

Из книги Улучшение зрения без очков (без рисунков) автора Уильям Горацио Бейтс

3.6.Дыхание Кислород, как известно, играет важную роль во многих жизненных процессах, происходящих в организме. Поэтому дыхательным упражнениям уделяется большое внимание практически во всех системах оздоровления человека. Не стал исключением и метод Бэйтса. Некоторыми

Из книги Наука о дыхании индийских йогов автора Вильям Волкер Аткинсон

Глава VI ДЫХАНИЕ ЧЕРЕЗ НОЗДРИ И ДЫХАНИЕ ЧЕРЕЗ РОТ Один из первых уроков науки дыхания йогов посвящается тому, чтобы научиться дышать носом и победить обычную привычку – дышать ртом.Дыхательный механизм человека позволяет ему дышать и носом и ртом, но для него дело истинно

Из книги Как продлить быстротечную жизнь автора Николай Григорьевич Друзьяк

АТФ - УНИВЕРСАЛЬНОЕ КЛЕТОЧНОЕ ГОРЮЧЕЕ И снова мы возвращаемся к энергетике клетки. Вспомним, что клетка - это отдельный микромир, имеющий четкие границы, внутри которых существует непрерывная химическая активность и непрерывный поток энергии. В переносе энергии от

Из книги Полная энциклопедия оздоровления автора Геннадий Петрович Малахов

Клеточное дыхание Клеточным дыханием называют совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жирных кислот и аминокислот расщепляются в конечном счете до углекислоты и воды, а освобожденная биологически

Из книги Заболевания кожи автора Автор неизвестен

Глава 1. Анатомия и гистология (клеточное строение) кожи. Особенности анатомии и гистологии кожи у детей Являясь внешним покровом тела человека, кожа имеет сложное строение и выполняет несколько важных функций. Самый большой орган человека – это кожа. Площадь кожного

Из книги Пропедевтика внутренних болезней автора А. Ю. Яковлева

31. Везикулярное дыхание. Бронхиальное дыхание Шумы, возникающие в процессе дыхания, делят на физиологические (или основные) и патологические (или дополнительные).К основным шумам относят везикулярное дыхание, прослушиваемое над всей поверхностью легочной ткани, и

Из книги Пропедевтика внутренних болезней: конспект лекций автора А. Ю. Яковлева

1. Везикулярное дыхание: механизм, физиологические и патологические варианты. Бронхиальное дыхание, его характеристика, разновидности, механизм образования Шумы, возникающие в процессе дыхания, делят на физиологические (или основные) и патологические (или

Из книги Йога автора Вильям Волкер Аткинсон

Из книги Диабет. Мифы и реальность автора Иван Павлович Неумывакин

Из книги 365 золотых упражнений по дыхательной гимнастике автора Наталья Ольшевская

265. Изначальное дыхание (дыхание зародыша) Дыхание человека обычно является отражением его стиля жизни. Люди, которые все время спешат, дышат поверхностно. Те, кто имеют возможность созерцать, – дышат глубоко. Но у каждого из нас был период максимального комфорта и

Из книги Все дыхательные гимнастики. Для здоровья тех, кому за… автора Михаил Борисович Ингерлейб

Глава 5. Клеточное дыхание Сложными, но верными в выбранном направлении тропами мы добрались до того момента, когда вам наконец станет ясно, для чего же столько хлопот – «тянуть» в глубь организма, к каждой его клеточке кислород, да еще и стараться, чтобы каждой клетке

Из книги Упражнения цигун для начинающих автора Валерий Николаевич Хорев

Дыхание Большинство из нас почему-то думают, будто ротовое отверстие пригодно не только для употребления пищи, но также для наполнения легких. Это заблуждение! Воздух, вдыхаемый через нос, проходит сложным лабиринтом, в котором он согревается, увлажняется и освобождается

Из книги Осознанное управление здоровьем автора Дмитрий Шаменков

Дыхание 1. Практика работы с дыханием, также как и телесная практика, тесно связана с фундаментальной практикой внимательности.2. Практика работы с дыханием требует повышенного внимания, так как дыхание - исключительно важный физиологический процесс.3. Практика работы с

Из книги Йога для всех. Руководство для начинающих автора Наталья Андреевна Панина

Дыхание При выполнении различных упражнений или асан необходимо правильно дышать. Для каждого конкретного случая подходит определенный тип дыхания. Ниже будет рассказано о некоторых из

Из книги Избранные упражнения и медитации автора Ниши Кацудзо

Обратное брюшное дыхание – «даосское дыхание» «Даосское дыхание» используется при занятиях боевыми искусствами. Оно позволяет быстро увеличить энергию тела при условии, что вы вдыхаете и выдыхаете воздух через нос.При вдохе вы втягиваете живот, максимально наполняя

Из книги автора

Грудное дыхание – дыхание силы Этот вид дыхания применяется для обретения силы при тяжелом физическом труде, например переноске тяжестей, перекатывании крупных камней и тяжелых стволов деревьев, а также при подготовке спортсменов и водолазов и в боевых искусствах.Вдох

Аэробное дыхание - это окислительный процесс, в ходе которого расходуется кислород . При дыхании субстрат без остатка расщепляется до бедных энергией неорганических веществ с высоким выходом энергии. Важнейшими субстратами для дыхания служат углеводы. Кроме того, при дыхании могут расходоваться жиры и белки.

Аэробное дыхание включает два основных этапа:

1. бескислородный , в процессе которого происходит постепенное расщепление субстрата с высвобождением атомов водорода и связыванием с коферментами (переносчиками типа НАД и ФАД);

2. кислородный , в ходе которого происходит дальнейшее отщепление атомов водорода от производных дыхательного субстрата и постепенное окисление атомов водорода в результате переноса их электронов на кислород.

На первом этапе вначале высокомолекулярные органические вещества (полисахариды, липиды, белки, нуклеиновые кислоты и др.) под действием ферментов расщепляются на более простые соединения (глюкозу, высшие карбоновые кислоты, глицерол, аминокислоты, нуклеотиды и т. п). Этот процесс происходит в цитоплазме клеток и сопровождается выделением небольшого количества энергии, которая рассеивается в виде тепла. Далее происходит ферментативное расщепление простых органических соединений.

Примером такого процесса является гликолиз - многоступенчатое бескислородное расщепление глюкозы. В реакциях гликолиза шестиуглеродная молекула глюкозы (С 6) расщепляется на две трехуглеродные молекулы пировиноградной кислоты (С 3). При этом образуются две молекулы АТФ, и выделяются атомы водорода. Последние присоединяются к переносчику НАД + (никотинамидадениндинуклеотид), который переходит в свою восстановленную форму НАД ∙ Н + Н + . НАД - кофермент, близкий по своей структуре к НАДФ. Оба они представляют собой производные никотиновой кислоты - одного из витаминов группы В. Молекулы обоих коферментов электроположительны (у них отсутствует один электрон) и могут играть роль переносчика как электронов, так и атомов водорода. Когда акцептируется пара атомов водорода, один из атомов диссоциирует на протон и электрон:

H → H + + e — ,

а второй присоединяется к НАД или НАДФ целиком:

НАД + + Н + [Н + + е — ] → НАД ∙ Н + Н + .

Свободный протон позднее используется для обратного окисления кофермента.

Суммарно реакция гликолиза имеет вид

С 6 Н 12 O 6 + 2АДФ + 2Н 3 РO 4 + 2НАД + → 2С 3 Н 4 O 3 + 2АТФ + 2НАД ∙ Н + Н + + 2Н 2 O.

Продукт гликолиза - пировиноградная кислота (С 3 Н 4 O 3) – заключает в себе значительную часть энергии, и дальнейшее ее высвобождение осуществляется в митохондриях. Здесь происходит полное окисление пировиноградной кислоты до СO 2 и Н 2 O. Этот процесс можно разделить на три основные стадии:

1) окислительное декарбоксилирование пировинофадной кислоты, 2) цикл трикарбоновых кислот (цикл Кребса); 3) заключительная стадия окисления - электронтранспортная цепь.

На первой стадии пировиноградная кислота взаимодействует с веществом, которое называют коферментом А (сокращенно его обозначают КоА), в результате чего образуется адетилкофермент А с высокоэнергетической связью. При этом от молекулы пировиноградной кислоты отщепляется молекула СO 2 (первая) и атомы водорода, которые запасаются в форме НАД ∙ Н + Н + .

Вторая стадия - цикл Кребса (названный так в честь открывшего его английского ученого Ганса Кребса).

В цикл Кребса вступает ацетил-КоА, образованный на предыдущей стадии. Ацетил-КоА взаимодействует со щавелево-уксусной кислотой (четырехутлеродное соединение), в результате образуется шестиуглеродная лимонная кислота. Для этой реакции требуется энергия; ее поставляет высокоэнергетическая связь ацетил-КоА. Далее превращение идет через образование ряда органических кислот, в результате чего ацетильные группы, поступающие в цикл при гидролизе ацетил-КоА, дегидрируются с высвобождением четырех пар атомов водорода и декарбоксилируются с образованием двух молекул СO 2 . При декарбоксилировании для окисления атомов углерода до СO 2 используется кислород, отщепляемый от молекул воды. В конце цикла щавелево-уксусная кислота регенерируется в прежнем виде. Теперь она способна вступить в реакцию с новой молекулой ацетил-КоА, и цикл повторяется. В процессе цикла используются три молекулы воды, выделяются две молекулы СO 2 и четыре пары атомов водорода, которые восстанавливают соответствующие коферменты (ФАД - флавина-дениндинуклеотид и НАД). Суммарно реакция цикла может быть выражена следующим уравнением:

ацетил-КоА + ЗН 2 O + ЗНАД + + ФАД + АДФ + H 3 PO 4 → КоА + 2СO 2 + ЗНАД ∙ Н + Н + + ФАД ∙ Н 2 + АТФ.

Таким образом, в результате распада одной молекулы пировиноградной кислоты в аэробной фазе (декарбоксилирование ПВК и цикла Кребса) выделяется ЗСO 2 , 4НАД ∙ Н + Н + , ФАД ∙ Н 2 .

Суммарно реакцию гликолиза, окислительного декарбоксилирования и цикла Кребса можно записать в следующем виде:

С 6 Н 12 O 6 + 6Н 2 O + 10НАД + 2ФАД → 6СO 2 + 4АТФ + 10НАД ∙ Н + Н + + 2ФАД ∙ Н 2 .

Третья стадия - электронтранспортная цепь.

Пары водородных атомов, отщепляемые от промежуточных продуктов в реакциях дегидрирования при гликолизе и в цикле Кребса, в конце концов окисляются молекулярным кислородом до Н 2 O с одновременным фосфорилированием АДФ в АТФ. Происходит это тогда, когда водород, отделившийся от НАД ∙ Н 2 и ФАД ∙ Н 2 , передается по цепи переносчиков, встроенных во внутреннюю мембрану митохондрий. Пары атомов водорода 2Н можно рассматривать как 2Н + + 2е — . Именно в таком виде они и передаются по цепи переносчиков. Путь переноса водорода и электронов от одной молекулы переносчика к другой представляет собой окислительно-восстановительный процесс. При этом молекула, отдающая электрон или атом водорода, окисляется, а молекула, воспринимающая электрон или атом водорода, восстанавливается. Движущей силой транспорта атомов водорода в дыхательной цели является разность потенциалов.

С помощью переносчиков ионы водорода Н + переносятся с внутренней стороны мембраны на ее внешнюю сторону, иначе говоря, из матрикса митохондрии в межмембранное пространство.

При переносе пары электронов от НАД на кислород они пересекают мембрану три раза, и этот процесс сопровождается выделением на внешнюю сторону мембраны шести протонов. На заключительном этапе электроны переносятся на внутреннюю сторону мембраны и акцептируются кислородом.

½O 2 + 2e — → O 2- .

В результате такого переноса ионов Н + на внешнюю сторону мембраны митохондрий в перимитохондриальном пространстве создается повышенная концентрация их, т. е. возникает электрохимический градиент протонов (ΔμН +).

Протонный градиент представляет собой как бы резервуар свободной энергии. Эта энергия используется при обратном потоке протонов через мембрану для синтеза АТФ. В ряде случаев может наблюдаться непосредственное использование энергии протонного градиента (ΔμН +). Она может обеспечивать осмотическую работу и транспорт веществ через мембрану против градиента их концентрации, использоваться на механическую работу и др. Таким образом, клетка располагает двумя формами энергии - АТФ и ΔμH + . Первая форма - химическая. АТФ растворяется в воде и легко используется в водной фазе. Вторая (ΔμH +) - электрохимическая - неразрывно связана с мембранами. Эти две формы энергии могут переходить друг в друга. При образовании АТФ используется энергия ΔμH + , при распаде АТФ энергия может аккумулироваться в виде ΔμH + .

Когда протонный градиент достигает определенной величины, ионы водорода из Н + -резервуара движутся по специальным каналам в мембране, и их запас энергии используется для синтеза АТФ. В матриксе они соединяются с заряженными частичками О 2- , и образуется вода: 2Н + + О 2- → Н 2 O.

Процесс образования АТФ в результате переноса ионов Н + через мембрану митохондрии получил название окислительного фосфорилирования . Он осуществляется при участии фермента АТФ-синтетазы. Молекулы АТФ-синтетазы располагаются в виде сферических гранул на внутренней стороне внутренней мембраны митохондрий.

В результате расщепления двух молекул пировиноградной кислоты и переноса ионов водорода через мембрану по специальным каналам синтезируется в целом 36 молекул АТФ (2 молекулы в цикле Кребса и 34 молекулы в результате переноса ионов Н + через мембрану).

Следует обратить внимание на то, что ферментные системы ориентированы в митохондриях противоположно тому, как это имеет место в хлоропластах: в хлоропластах Н + -резервуар находится с внутренней стороны внутренней мембраны, а в митохондриях - с ее наружной стороны; при фотосинтезе электроны движутся в основном от воды к переносчикам атомов водорода, при дыхании же переносчики водорода, передающие электроны в электронтранспортную цепь, находятся с внутренней стороны мембраны, а электроны в конечном счете включаются в образующиеся молекулы воды.

Кислородный этап, таким образом, дает энергии в 18 раз больше, чем ее запасается в результате гликолиза. Суммарное уравнение аэробного дыхания можно выразить следующим образом:

С 6 Н 12 О 6 + 6O 2 + 6Н 2 O + 38АДФ + З8Н 3 РО 4 → 6СO 2 + 12Н 2 O + 38АТФ.

Совершенно очевидно, что аэробное дыхание прекратится в отсутствие кислорода, поскольку именно кислород служит конечным акцептором водорода. Если клетки не получают достаточного количества кислорода, все переносчики водорода вскоре полностью насытятся и не смогут передавать его дальше. В результате основной источник энергии для образования АТФ окажется блокированным.

КЛЕТОЧНОЕ ДЫХАНИЕ

Основными процессами, обеспечивающими клетку энергией, являются фотосинтез, хемосинтез, дыхание, брожение и гликолиз как этап дыхания.

С кровью кислород проникает в клетку, вернее в особые клеточные структуры митохондрии. Они есть во всех клетках, за исключением клеток бактерий, сине-зеленых водорослей и зрелых клеток крови (эритроцитов). В митохондриях кислород вступает в многоступенчатую реакцию с различными питательными веществами белками, углеводами, жирами и др. Этот процесс называется клеточным дыханием. В результате выделяется химическая энергия, которую клетка запасает в особом веществе аденозинтрифосфорной кислоте, или АТФ. Это универсальный накопитель энергии, которую организм тратит на рост, движение, поддержание своей жизнедеятельности.

Дыхание это окислительный, с участием кислорода распад органических питательных веществ, сопровождающийся образованием химически активных метаболитов и освобождением энергии, которые используются клетками для процессов жизнедеятельности.

Общее уравнение дыхания имеет следующий вид:

Где Q=2878 кДж/моль.

Но дыхание, в отличие от горения, процесс многоступенчатый. В нем выделяют две основные стадии: гликолиз и кислородный этап.

Гликолиз

Драгоценная для организма АТФ образуется не только в митохондриях, но и в цитоплазме клетки в результате гликолиза (от греч. гликис - сладкий и лисис распад). Гликолиз не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета.

Гликолиз процесс очень сложный. Это процесс расщепления глюкозы под действием различных ферментов, который не требует участия кислорода. Для распада и частичного окисления молекулы глюкозы необходимо согласованное протекание одиннадцати последовательных реакций. При гликолизе одна молекула глюкозы дает возможность синтезировать две молекулы АТФ. Продукты расщепления глюкозы могут затем вступать в реакцию брожения, превращаясь в этиловый спирт или молочную кислоту. Спиртовое брожение свойственно дрожжам, а молочнокислое свойственно клеткам животных и некоторых бактерий. Многим аэробным, т.е. живущим исключительно в бес кислородной среде, организмам хватает энергии, образующейся в результате гликолиза и брожения. Но аэробным организмам необходимо дополнить этот небольшой запас, причем весьма существенно.

Кислородный этап дыхания

Продукты расщепления глюкозы попадают в митохондрию. Там от них сначала отщепляется молекула углекислого газа, который выводится из организма при выходе. Дожигание происходит в так называемом цикле Кребса (приложение №1) (по имени описавшего его английского биохимика) последовательной цепи реакций. Каждый из участвующих в ней ферментов вступает в соединения, а после нескольких превращений вновь освобождается в первоначальном виде. Биохимический цикл вовсе не бесцельное хождение по кругу. Он больше схож с паромом, который снует между двумя берегами, но в итоге люди и машины движутся в нужном направлении. В результате совершающихся в цикле Кребса реакций синтезируются дополнительные молекулы АТФ, отщепляются дополнительные молекулы углекислого газа и атомы водорода.

Жиры тоже участвуют в этой цепочке, но их расщепление требует времени, поэтому если энергия нужна срочно, то организм использует не жиры, а углеводы. Зато жиры очень богатый источник энергии. Могут окислятся для энергетических нужд и белки, но лишь в крайнем случае, например при длительном голодании. Белки для клетки неприкосновенный запас.

Главный по эффективности процесс синтеза АТФ происходит при участии кислорода в многоступенчатой дыхательной цепи. Кислород способен окислять многие органические соединения и при этом выделять много энергии сразу. Но такой взрыв для организма был бы губителен. Роль дыхательной цепи и всего аэробного, т.е. связанного с кислородом, дыхания состоит именно в том, чтобы организм обеспечивался энергией непрерывно и небольшими порциями в той мере, в какой мере это организму нужно. Можно провести аналогию с бензином: разлитый по земле и подожженный, он мгновенно вспыхнет без всякой пользы. А в автомобиле, сгорая понемногу, бензин будет несколько часов совершать полезную работу. Но для этого такое сложное устройство, как двигатель.

Дыхательная цепь в совокупности с циклом Кребса и гликолизом позволяет довести выход молекул АТФ с каждой молекулы глюкозы до 38. А ведь при гликолизе это соотношение было лишь 2:1. Таким образом, коэффициент полезного действия аэробного дыхания намного больше.

Как устроена дыхательная цепь?

Механизм синтеза АТФ при гликолизе относительно прост и может без труда быть воспроизведен в пробирке. Однако никогда не удавалось лабораторно смоделировать дыхательный синтез АТФ. В 1961 году английский биохимик Питер Митчел высказал предположение, что ферменты соседи по дыхательной цепи соблюдают не только строгую очередность, но и четкий порядок в пространстве клетки. Дыхательная цепь, не меняя своего порядка, закрепляется во внутренней оболочке (мембране) митохондрии и несколько раз прошивает ее будто стежками. Попытки воспроизвести дыхательный синтез АТФ потерпели неудачу, потому что роль мембраны исследователями недооценивались. А ведь в реакции участвуют еще ферменты, сосредоточенные в грибовидных наростах на внутренней стороне мембраны. Если эти наросты удалить, то АТФ синтезироваться не будет.

Дыхание, приносящее вред.

Молекулярный кислород мощный окислитель. Но как сильнодействующее лекарство, он способен давать и побочные эффекты. Например, прямое взаимодействие кислорода с липидами вызывает появление ядовитых перекисей и нарушает структуру клеток. Активные соединения кислорода могут повреждать также белки и нуклеиновые кислоты.

Почему же не происходит отравления этими ядами? Потому, что им есть противоядие. Жизнь возникла в отсутствие кислорода, и первые существа на Земле были анаэробными. Потом появился фотосинтез, а кислород как его побочный продукт начал накапливаться в атмосфере. В те времена этот газ был опасен для всего живого. Одни анаэробы погибли, другие нашли бескислородные уголки, например, поселившись в комочках почвы; третьи стали приспосабливаться и меняться. Тогда-то и появились механизмы, защищающие живую клетку от беспорядочного окисления. Это разнообразные вещества: ферменты, в том числе разрушитель вредоносной перекиси водорода катализа, а также многие другие небелковые соединения.

Дыхание вообще сначала появилось, как способ удалять кислород из окружающей организм атмосферы и лишь потом стало источником энергии. Приспособившиеся к новой среде анаэробы стали аэробами, получив огромные преимущества. Но скрытая опасность кислорода для них все же сохранилась. Мощность антиокислительных противоядий небезгранична. Вот почему в чистом кислороде, да еще под давлением, все живое довольно скоро погибает. Если же клетка окажется повреждена каким-либо внешним фактором, то защитные механизмы обычно отказывают в первую очередь, и тогда кислород начинает вредить даже при обычной атмосферной концентрации