Морозостойкость плотностных и пористых материалов. Способ определения морозостойкости строительных материалов Что такое морозостойкость и каковы методы ее определения? Какие требования по морозостойкости предъявляют к керамическим стеновым и облицовочным

В строительном материаловедении понятие морозостойкость связывают с воздействием на материал двух основных факторов:

– влияние низких температур (для абсолютно плотных материалов, таких как стекло, металлы полимерные материалы и др.);

– совокупное влияние низких температур и воды (для материалов мелкопористой структуры, таких как природные и искусственные каменные материалы, в том числе строительная керамика, бетоны, растворы и др.).

Таким образом, для плотных материалов морозостойкость – способность материала сохранять эксплуатационные свойства при низких температурах. К таким материалам предъявляются требования в зависимости от условий их эксплуатации. В большинстве случаев основным требованием является сохранение целостности структуры.

Механизм разрушения структуры материала при перепадах температуры связан с явлением расширения – сжатия и изменением упругих свойств материала. При низких температурах материал становится более хрупким, ломким, резко снижается ударная прочность. Это в большей степени относится к полимерным материалам и металлам.

Для оценки морозостойкости полимеров на практике часто используют условный коэффициент морозостойкости, который определяют по формуле

Кмрз= RТ / R20,

где Кмрз –коэффициент морозостойкости, ед.;

RT и R20 – предел прочности при изгибе образцов, соответственно, при температуре эксплуатации и при 20ºС, МПа.

Морозостойкость природных и искусственных каменных материалов – способность материала выдерживать многократное попеременное замораживание и оттаивание в насыщенном водой состоянии без видимых признаков разрушения и допустимого понижения прочности.

Разрушительное воздействие мороза на ограждающую конструкцию можно условно разделить на три основных периода: водонасыщения, промерзания и, собственно, разрушения.

В наиболее влажный период года происходит водонасыщение поверхностного слоя ограждающей конструкции.

При понижении температуры окружающей среды наружные слои конструкции постепенно охлаждаются, направляя фронт распространения низких температур внутрь конструкции.

Тем временем, водяной пар, находящийся в противоположной зоне конструкции, перемещается от тепла к холоду, поскольку его давление при отрицательной температуре ниже, чем при положительной. Попадая в зону низких температур, водяной пар конденсируется в порах, вблизи наружной поверхности ограждающей конструкции (рис. 4.29).

При наступлении даже небольших морозов (-5 ÷ -8 ºС) вода, находящаяся в крупных порах, замерзая и превращаясь в лед, создает напряженное состояние в материале.

Рис. 4.29. Распределение температуры в наружной стене здания (а) и заполнение пор водой (б) вблизи наружной поверхности: 1 – адсорбированная вода; 2 – конденсат; 3 – устье; 4 – дождевая вода

Морозостойкость - способность насыщенного водой материа­ла сохранять физико-механические свойства при попеременном замораживании и оттаивании.

Морозостойкость строительного материала характеризуется маркой по морозостойкости: числом циклов попеременного замора­живания и оттаивания образцов бетона, после которых сохраняются первоначальные физико-механические свойства в нормируемых пределах: как правило, потеря массы и (или) прочности.

Щебень Полученные пробы промывают и высушивают до постоянной массы. Затем каждую пробу данной фракции равномерно насыпают в металлический сосуд и заливают водой, имеющей температуру 20±5 °С. Через 48 ч сливают воду из сосуда, помещают щебень в морозильную камеру и доводят температуру в камере до (-18±2) °С. Продолжительность одного цикла замораживания при такой темпе­ратуре составляет 4 ч. После этого сосуд с щебнем вынимают из морозильной камеры и помещают в ванну с водой с температурой 20±5 °С и выдерживают при этой температуре до полного оттаива­ния щебня, но не менее 2 ч. Далее циклы испытания повторяют.

После 15, 25 и каждых 25 циклов попеременного заморажива­ния и оттаивания пробу щебня высушивают до постоянной массы, просеивают через контрольное сито, на котором она полностью ос­тавалась перед испытанием, взвешивают остаток на сите и вычис­ляют потерю массы Am, %, с точностью до 0,1% по формуле Морозостойкость бетона определяется на образцах кубической формы размером 100x100x100 мм или 150x150x150 мм при дости­жении им нормативной прочности на сжатие (как правило, после 28 суток твердения).

Контрольные и основные образцы перед заморажива­нием насыщают водой температурой 18±2 °С.

Для насыщения образцы погружают в жидкость на 1/3 их высо­ты на 24 ч, затем уровень жидкости повышают до 2/3 высоты об­разца и выдерживают в таком состоянии еще 24 ч, после чего об­разцы полностью погружают в жидкость на 48 ч таким образом, что­бы уровень жидкости был выше верхней грани образцов не менее чем на 20 мм.

Контрольные образцы через 2...4 ч после извлечения из ванны испытывают на сжатие.

Основные образцы загружают в морозильную камеру при тем­пературе минус 18+2 °С и выдерживают при этой температуре не менее 2,5 ч для образцов с ребром 100 мм и не менее 3,5 ч для об­разцов с ребром 150 мм. Образцы после замораживания оттаивают в ванне с водой при температуре 18±2 °С в течение 2,0±0,5 ч и 3,0+0,5 ч соответственно в зависимости от размера образцов. В су­тки должно проводиться не менее 1 цикла.

Количество циклов попеременного замораживания и оттаива­ния, после которых должно проводиться испытание на сжатие, ус­танавливается в зависимости от ожидаемой марки бетона по моро­зостойкости.

Марку бетона по морозостойкости принимают за соответст­вующую требуемой, если среднее значение прочности на сжатие основных образцов после установленного для данной марки коли­чества циклов попеременного замораживания и оттаивания умень­шилось не более чем на 5 % по сравнению со средней прочностью на сжатие контрольных образцов.

Для цементных бетонов установлены следующие марки по мо­розостойкости: F25, F35, F50, F75, F100, F150, F200, F300, F400, F500, F600, F800. F1000. Зависит от физических свойств материала.

Назовите свойства, связанные с отношением материала к нагреванию. Единицы измерения. Численные значения. Примеры для различных материалов.

Теплопроводность(ккал/м*ч*градус,вода0,51),термостойкость,теплоёмкость(кДЖ/кг*градус вода=1), огнеупорность(градусы), огнестойкость(градусы). Теплопроводность сталь 50 . теплоёмкость сталь – 0,48

Теплопроводность. От чего зависит? В каких единицах измеряется. Численные значения теплопроводности для различных материалов. Для каких конструкций учитывается?

Теплопроводность (ккал/м*ч*градус) – это способность материала передавать через свою толщу тепло. Это явление возникает когда на противоположных поверхностях материала существует разность температур, например, на внешней и внутренней поверхностях стен здания. Зависит от строения и вещества материала, величины и характера пористости, влажности и др. Воздух – 0,02. Вода-0,51.Кирпич-0,75.гранит-2,5.Сталь-50. Учитывается для стен помещений, жилых строений и тд.

Объясните различие между огнестойкостью, огнеупорностью и теплостойкостью. Примеры.

Огнестойкость-способность материала не гореть. Огнеупорность-способность материала выдерживать длительное время действие высоких температур без деформации(без плавления). Термостойкость – способность материала сохранять эксплуатационные свойства при повышенных температурах: не деформируясь сохранять прочность.

Назовите механические и деформативные свойства материалов. Методы их определения.

Механические свойства отражают способность материала противостоять механическим воздействиям (нагрузкам) при эксплуатации. Нагрузки могут быть постоянными и временными. Св-ва: прочность твёрдость, стойкость при ударе, стойкость при истирании, износостойкость,упругопластические и деформативные св-ва.

Релаксация - свойство материала самопроизвольно снижать напряжения при условии, что начальная ее личина деформации зафиксирована жесткими связями и остается неизменной. При релаксации напряжений может измениться характер начальной деформации, например из упругой постепенно перейти в необратимую "(пластическую), при этом изменения размеров не происходит. Такое исчезновение напряжений возможно за счет межмолекулярных перемещений и переориентации внутримолекулярной структуры. Время, в течение которого первоначальная величина напряжения снижается в е -2,718 раза (е - основание натуральных логарифмов), называют периодом релаксации. Период релаксации меняется от 1(Н0 с у материалов жидкой консистенции до 2-Ю10 с (десятки лет и более) - у твердых материалов (чем меньше, тем более деформативен материал).

Упругость - свойство материала принимать после снятия нагрузки первоначальную форму и размеры. Количественно упругость характеризуют пределом упругости, который условно приравнивают напряжению, при котором материал начинает получать остаточные деформации очень малой величины, устанавливаемой в технических условиях для данного материала.Вышеуказанные характеристики прочности в значительной степени являются условными: 1) они не учитывают фактора времени, т. е. продолжительности действия напряжений, что искажает величину истинной прочности материала; 2) размеры, форма, характер поверхности образцов материала, скорость нагружения, прикалывания боры и другие исходные данные в принятых методах условны. Предел прочности одного и того же материала может иметь различную величину в зависимости от размера образца, его формы, скорости приложения нагрузки и конструкции прибора, на котором испытывались образцы.

Твердость - свойство материала сопротивляться проникновению в него другого более твердого материала. Для определения твердости материалов в зависимости от их вида и назначения существует ряд методов. Твердость каменных материалов однородного строения определяют по шкале Мооса, которая составлена из 10 минералов с условным показателем твердости от 1 до 10 (самый мягкий тальк- 1, самый твердый алмаз- 10). Показатель твердости испытуемого материала находится между показателями твердости двух соседних минералов, из которых один царапает испытываемый материал, а другой оставляет черту на образце материала. Твердость металла, бетона, пластмасс определяют вдавливанием в испытуемый образец под определенной нагрузкой и в течение определенного времени стандартного стального шарика. За характеристику твердости в этом случае принимают отношение нагрузки к площади отпечатка. Показатели твердости, полученные разными способами, нельзя сравнивать друг с другом. Высокая прочность материала не всегда говорит о его твердости (например, древесина по прочности при сжатии равнозначна бетону, а ее твердость значительно меньше, чем у бетона).

Истираемость - свойство материала сопротивляться истирающим воздействиям. Одновременное воздействие истирания и удара характеризует износостойкость материала. Оба эти свойства определяют различными условными методами: истираемость - на специальных кругах истирания, а износ - с помощью вращающихся барабанов, куда вместе с пробой материала часто загружают определенное количество металлических шаров, усиливающих эффект измельчения. За характеристику истираемости принимают потерю массы или объема материала, отнесенных к 1 см2 площади истирания, а за характеристику износа - относительную потерю массы образца в процентах от пробы материала.

Что такое морозостойкость и каковы методы ее определения? Какие требования по морозостойкости предъявляют к керамическим стеновым и облицовочным материалам

Морозостойкость - свойство насыщенного водой материала выдерживать попеременное замораживание и оттаивание. Морозостойкость материала количественно оценивается маркой по морозостойкости. За марку материала по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, которое выдерживают образцы материала без снижения прочности на сжатие более 15%; после испытания образцы не должны иметь видимых повреждений - трещин, выкрашивания (потеря массы не более 5%).

От морозостойкости зависит долговечность строительных материалов в конструкциях, подвергающихся действию атмосферных факторов и воды. Марка по морозостойкости устанавливается проектом с учетом вида конструкции, условий ее эксплуатации и климата. Климатические условия характеризуются среднемесячной температурой наиболее холодного месяца и числом циклов попеременного замораживания и оттаивания по данным многолетних метеорологических наблюдений. Легкие бетоны, кирпич, керамические камни для наружных стен обычно имеют морозостойкость 15, 25, 35. Однако бетон, применяемый в строительстве мостов и дорог, должен иметь марку 50, 100 и 200, а гидротехнический бетон - до 500.Воздействие на бетон попеременного замораживания и оттаивания подобно многократному воздействию повторной растягивающей нагрузки, вызывающей усталость материала.

Испытание морозостойкости материала в лаборатории проводят на образцах установленной формы и размеров (бетонные кубы, кирпич и т.п.) перед испытанием образцы насыщают водой. После этого их замораживают в холодильной камере от -15 до -20С, чтобы вода замерзла в тонких порах. Извлеченные из холодильной камеры образцы оттаивают в воде с температурой 15-20С, которая обеспечивает водонасыщенное состояние образцов. Базовые - первый (для всех видов бетонов, кроме бетонов дорожных и аэродромных покрытий) и второй (для бетонов дорожных и аэродромных покрытий); ускоренные при многократном замораживании и оттаивании - второй и третий;ускоренные при однократном замораживании - четвертый (дилатометрический) и пятый (структурно-механический).

Для оценки морозостойкости материала применяют физические методы контроля и прежде всего импульсный ультразвуковой метод. С его помощью можно проследить изменение прочности или модуля упругости бетона в процессе циклического замораживания и определить марку бетона по морозостойкости в циклах замораживания и оттаивания, число которых соответствует допустимому снижению прочности или модуля упругости.

По морозостойкости насыщенный водой глиняный обыкновенный кирпич должен выдерживать без каких-либо внешних признаков разрушения (расслоение граней, выкрашивание ребер и углов, растрескивание) не менее 15 повторных циклов попеременного замораживания при температуре -75°С и ниже с последующим оттаиванием в воде при температуре 15±5°С.

Легковесный кирпич должен выдерживать без каких-либо временных признаков разрушения не менее 10 повторных циклов попеременного замораживания при температуре -15°С и ниже с последующим оттаиванием при температуре 15 ±5°С.

Лицевой кирпич должен выдерживать без каких-либо признаков видимых повреждений не менее 25 повторных циклов попеременного замораживания с последующим оттаиванием в воде.

Цель работы : определить марку по морозостойкости цементного бетона. Познакомиться с методами ее определения.

I . Теоретическая часть:

Морозостойкость – это свойство насыщенного водой или раствором соли материала выдерживать многократное попеременное замораживание и оттаивание без значительных признаков разрушения и снижения прочности. Количественная характеристика морозостойкости – марка по морозостойкости (F ), которая показывает число циклов попеременного замораживания и оттаивания насыщенного в жидкой среде материала, при которых потери прочности и массы не превышают указанных в ГОСТе и СНиПах значений.

;

- потеря прочности и массы, насыщенного в жидкой среде образца, после i циклов замораживания и оттаивания, %;

- предел прочности при сжатии(в МПа) и масса (в г) образца после n циклов замораживания и оттаивания образца;

- предел прочности при сжатии (в МПа) и масса образца (в г), насыщенного в жидкой среде, до замораживания.

Для каждого материала устанавливают марки по морозостойкости. Марка обозначается буквой F , после которой указывается минимальное число циклов, которое должен выдержать материал (например, F100).

Марка по морозостойкости (F ) для тяжелого цементного бетона – это количество циклов попеременного замораживания и оттаивания насыщенного водой стандартного образца, при которых потеря прочности не превышает 5%, а для бетона дорожных и аэродромных покрытий, кроме того, потеря массы не более чем на 3% (ГОСТ ……).

Стандарт устанавливает три метода контроля морозостойкости:

I – для бетонов, кроме дорожных и аэродромных;

II – для дорожных и аэродромных бетонов и ускоренный для других бетонов;

III – ускоренный для всех видов бетона.

Методы контроля морозостойкости.

Размеры образцов, см

Температурный режим, время и среда

Число образцов

насыщения

замораживания

оттаивания

основных

(после замора-живания)

контрольных

(насыщенных водой)

t = 18+ 2 0 C

96 ч

t = -18+ 2 0 С

=2,5+ 0,5 ч

t = 18+ 2 0 C

=2+ 0,5 ч

5% р-р

t=18+ 2 0 С

=96 ч

t = -18+ 2 0 С

=2,5+ 0,5 ч

5% р-р

t=18+ 2 0 С

=2,5+ 0,5 ч

5% раствор

t=18+ 2 0 С

=96 ч

Понижение до -50-55 0 С-2,5 ч

выдержка при -50-55 0 С– 2,5 ч

подъем до -10 0 С – 2,5 ч

t=18+ 2 0 С

=2,5+ 0,5 ч

Образцы насыщают в жидкой среде по следующей схеме:

На 1/3 высоты - 24 часа, на 2/3 высоты – на 24 часа, целиком – на 48 часов.

Соотношение между марками бетона по морозостойкости, установленными различными методами, приведены в ГОСТ 10060-95.

II . Материалы и оборудование:

Образцы-кубы тяжелого цементного бетона;

Ванны для насыщения образцов в жидкой среде;

Торговые весы с разновесами;

Гидравлический пресс;

Морозильная камера;

Ванна для размораживания.

III . Методика проведения работы.

Контрольные образцы через 2-4 ч после извлечения из ванны испытать на сжатие.

Основные образцы загрузить в морозильную камеру в контейнере или установить на сетчатый стеллаж камеры таким образом, чтобы расстояние между образцами, стенками контейнеров и вышележащими стеллажами было не менее 50 мм. Началом замораживания считать момент установления в камере требуемой температуры;

Число циклов переменного замораживания и оттаивания, после которых должно проводиться испытание прочности на сжатие образцов бетона после промежуточных и итоговых испытаний, установить в соответствии с таблицей ГОСТ 10060.0. В каждом возрасте испытать по шесть основных образцов.

Образцы испытать по режиму, указанному в таблице.

Образцы после замораживания оттаять в ванне с водой при температуре (18±2)°С. При этом образцы должны быть погружены в воду таким образом, чтобы над верхней гранью был слой воды не менее 50 мм.

Исходные расчетные данные выдаются каждому студенту преподавателем на специальных карточках для бетона определенной марки.

IV . Лабораторный журнал.

Кол-во циклов замор.-оттаив.

R сж ,

Потеря прочности

Масса образца

,

Потеря массы

Коэф. Морозостойкости

,

,

Полученные расчетные данные обработать в виде графиков:

и

По построенным кривым определить морозостойкость бетона – допустимое число циклов замораживания и оттаивания, при которых потеря прочности равна 5% и потеря массы 3%. Установить марку бетона по морозостойкости – F , в соответствии с указанными марками в ГОСТе, как ближайшее количество циклов, найденных по графикам.

Марка по морозостойкости для дорожного и аэродромного бетона устанавливается как ближайшее круглое число циклов, менее или равное опытному, при котором:

и

для всех остальных видов бетона учитывается только потеря прочности.

Для образцов, не имеющих видимых следов разрушения после заданного числа циклов замораживания и оттаивания, вычисляют коэффициент морозостойкости:

Где
и
- пределы прочности при сжатии образцов материала, соответственно после испытания на морозостойкость и водонасыщенных образцов до замораживания, в МПа.

Приложение 1

Таблица 1

Физико-механические свойства некоторых материалов

Наименование материала

Прочность при сжатии,

Истинная плотность,

кг/м 3

Средняя плотность, кг/м 3

Тепло-проводность,

Вт/(м .0 С)

Известняк плотный

Известняк - ракушечник

Кирпич керамический

Кирпич силикатный

Бетон тяжелый

Бетон легкий

Древесина сосны

Сталь Ст3(при растяжении)

Пластмассы

Таблица 2

Пористость и водопоглощение керамического кирпича

Литература.

    И.И. Леонович, В.А. Стрижевский, К.Ф. Шумчик. Испытание дорожно-строительных материалов.: Минск, Вышэйшая школа, 1991. – 235 с.

    К.Н. Попов, М.Б. Каддо, О.В. Кульков. Оценка качества строительных материалов.: Москва, АСВ, 2001. – 240 с.

    И.А. Рыбьев. Строительное материаловедение. М.: Высшая школа, 2003.

    Микульский,В.Г. Строительные материалы (материаловедение и технология): Учебное пособие.- М: ИАСВ, 2002.- 536с.

Материалы, предназначенные для устройства несущих конструкций, должны обладать каким-то запасом долговечности. Вообще, долговечность - это свойство конструкции, а не материала. Но для материалов тоже есть критерии оценки применимости для устройства ответственных зданий с большим расчетным сроком службы.

Для определения долговечности металлических конструкций применяют понятие коррозионной стойкости. Для металлов предусматривают способы защиты от коррозии: покрытия, легирование, защитные слои бетона вокруг арматурных стержней. Для полимеров иногда нормируют стойкость к деполимеризации и охрупчиванию. Однако полимеры в качестве элементов несущих конструкций почти не применяются, поэтому их долговечность на безопасную эксплуатацию влияет мало. Для каменных конструкций в качестве критерия долговечности используют марку по морозостойкости материала наружного слоя кладки.

Основной механизм старения камней - исчерпание ресурса морозостойкости внешними слоями кладки, подвергающимися воздействию дождей и мороза. Нормируется морозостойкость материала наружных 12 см однослойной каменной кладки или морозостойкость наружного слоя слоистой стены, а также морозостойкость материала верхней части каменных фундаментов - на всю толщину кладки (требования изложены в СП 15.13330.2012 «Каменные и армокаменные конструкции»).

Если каменная конструкция спроектирована правильно - с учетом недопустимости влагонакопления в толще стены в отопительный период - то морозостойкость слоев, не подвергающихся прямому воздействию осадков, становится не важным фактором.

Нормируется морозостойкость через марку по морозостойкости. Для стен жилых и офисных зданий с расчетным сроком эксплуатации 100 лет и более, морозостойкость камня должна быть не ниже марки F35. Для зданий, которые строятся на побережье Северного Ледовитого океана - не ниже F50. Для тонких каменных облицовок требования жестче - F75.

Что такое марка по морозостойкости? Это количество лабораторных циклов замораживания водонасыщенного материала до температуры –18 °С с последующим оттаиванием без высушивания, при котором не происходит снижения эксплуатационных свойств материала. Критерии проверки качества циклически промороженных материалов отличаются. У бетонов проверяется потеря прочности (должна быть не более 15%). У кирпича проверяется сохранение внешнего вида.

Для оценки применимости материалов и долговечности конструкций из них следует понимать, что численное значение марки никак не связано с ожидаемым количеством лет безаварийной эксплуатации. Просто в первой половине ХХ века, когда разрабатывали методы оценки применимости камней для кладки ответственных конструкций, определили опытным путем, что камни, в лаборатории показывающие 35 циклов, в натурных условиях европейской части России обеспечивают более ста лет неизменности свойств наружных стен.

Для примера возьмем знакомые нам здания из массовой застройки Ленинграда: кирпичные 12 этажные точечные дома со стенами в 2 щелевых кирпича, строившиеся в 1970-х гг., построены из кирпича морозостойкостью по большей части F25–35; газобетонные панельные «корабли» серии 600.11 - из газобетона марки F25. И те и другие эксплуатируются по полвека без признаков разрушения. Их ресурс далек от исчерпания.

Заключение: практически все каменные материалы, из представленных на современном рынке, обладают достаточной морозостойкостью для строительства домов, которые прослужат не одному поколению жильцов. Важно обеспечивать их грамотную эксплуатацию: водоотвод с подоконников и парапетов, наружная отделка, не запирающая влагу в толще стены, нормальный влажностный режим помещений, ограждаемых каменными стенами или пароизоляция на их внутренней поверхности.